نتایج جستجو برای: مجموعه ی احاطه گر
تعداد نتایج: 129247 فیلتر نتایج به سال:
چندجمله ای احاطه گر گراف g از مرتبه n به صورت d(g,x)=?_(i=?(g))^n??d(g,i)? تعریف می شود که d(g,i) تعداد مجموعه های احاطه گر گراف g از اندازه i بوده و ?(g) عدد احاطه ای g است. ریشه d(g,x) را ریشه احاطه ای نامیده و با z(d(g,x)) نشان می دهند. در این پایان نامه خواص اساسی چند جمله ای بعضی گراف ها را مطالعه و چند جمله ای احاطه گر دورها و مسیرها را تعیین می کنیم.
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...
این پایان نامه، مشتمل بر 3 فصل است. در فصل اول تعاریف مقدماتی و قضایای پایه ای را بیان می کنیم. سپس در فصل دوم عدد احاطه ای ضعیفاً همبند و در فصل سوم عدد زیرتقسیم احاطه ای ضعیفاً همبند را بررسی نموده و کران هایی برای آن ها ارائه می کنیم. همچنین مقدار دقیق این پارامتر ها را برای برخی از گراف ها بدست می آوریم. فرض کنید g یک گراف با مجموعه رأس های (v(g و مجموعه یال های (e(g باشد. زیر مجموعه s از رأ...
فرض کنید g=(v(g),e(g)) گرافی با مجموعه رئوس v(g) و مجموعه یال های e(g) باشد. زیرمجموعه s از رئوس g یک مجموعه احاطه گر نامیده می شود هرگاه هر رأس در v(g)-s حداقل با یک رأس در s مجاور باشد. عدد احاطه ای گراف g، کوچکترین اندازه یک مجموعه احاطه گر در g است و با ?(g) نشان داده میشود. به وضوح عدد احاطه ای گراف g با حذف یال هایی از g ممکن است افزایش یابد. اگر g یک گراف ناتهی باشد، مینیمم تعداد یال ...
فرض کنید g گرافی با مجموعه رئوس v باشد. زیرمجموعه d از v یک مجموعه احاطه گر است هرگاه هر راس از v-d با راسی از d مجاور باشد. افراز دماتیک رئوس عبارت است از افراز رئوس به مجموعه های احاطه گر. بیشترین تعداد مجموعه در چنین افرازی، عدد دماتیک g نامیده میشود. فرض گنید f تابعی باشد که به رئوس گراف مقادیر 0، 1 و 2 را نسبت می دهد. هرگاه هر راس با مقدار 0 با راسی با مقدار 2 مجاور باشد، به چنین تابعی تا...
یکی از پارامترهای مهم در نظریه گراف هم از نظر کاربردی و هم از نظر جذابیت های تحقیقاتی پارامتر عدد احاطه گر یک گراف است. زیر مجموعه d از مجموعه راس های گراف v,e=g یک مجموعه احاطه گر برای g است هر گاه هر راس از v-d با راسی در d مجاور باشد تاکنون مقالات فراوان و کتابهایی در مورد این مفهوم و تعمیم هایی از آن نوشته شده است. از جمله تعمیم های این پارامتر مفهوم مجموعه احاطه گر مهارکننده کلی در گراف ها...
برخی از مسائل بهینه سازی در گراف ها وجود دارند که با استفاده از آن ها برخی پارامترهای گراف از جمله ماکسیمم عدد استقلال، ماکسیمم عدد تطابق یالی، مینیمم عدد پوشش رأسی و یالی و مینیمم عدد احاطه کننده ی رأسی، کلی و یالی به دست می آیند. فرض کنید g یک گراف ساده باشد. زیرمجموعه ی s از رئوس g را یک مجموعه ی احاطه کننده از گراف مذکور نامیم هرگاه هر رأسی از گراف که در s نباشد حداقل یک همسایه در s داشته ب...
چکیده :فرض کنیم یک گراف ساده و متناهی با مجموعه رئوس است. یک تابع احاطه گر رومن علامتدار تام روی گراف یک تابع مانند است بطوریکه: الف) برای هر ، ب) هر رأس با ویژگی مجاور با حداقل یک رأس با است. وزن یک برای تابع برابر تعریف می شود. عدد احاطه گر رومن علامتدار تام برای را که با نمایش می دهیم برابر می نیمم وزن تمام ها روی است. عدد پایداری احاطه گر رومن علامتدار تام در گراف که با نمایش داده می شود ...
در این پایان نامه ضمن بررسی مجموعه های احاطه گرهمبندبیرونی،برای عدداحاطه ای همبندبیرونی چندکران ارائه می کنیم. همچنین گراف هایی باعدد احاطه ای همبندبیرونی بزرگ را دسته بندی کرده و نامساوی از نوع nordhaus-gaddumرا برای عدد احاطه ای همبند بیرونی ثابت می کنیم. بعلاوه، رابطه بین عدد احاطه ای همبندبیرونی را باپارامترهای دیگر یک گراف بررسی خواهیم کرد.
احاط هگر ها، یکی از مباحثمهم در نظریه ی گراف ها، محسوب می شود. احاطه گر در نظریه ی گراف دارای کاربرد های فراوانی نظیر مسائل جانمایی در دنیای واقعی است. یکی از انواع احاط هگر ها، احاطه گر رنگین کمان است. f : v (g)
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید