نتایج جستجو برای: متریک مجموعه مقدار

تعداد نتایج: 93991  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی خواجه نصیرالدین طوسی 1389

در این پایان نامه ضمن تعریف فضاهای متریک به طور یکنواخت محدب به بررسی نقاط ثابت نگاشت های مجموعه مقدار در این نوع فضاهامی پردازیمو همچنین همگرایی اسکیم های ایشیکاوا و مان را برای نگاشت های نامنبسط در این فضاها می پردازیم

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه فردوسی مشهد - دانشکده علوم ریاضی 1389

نظریه نقطه ثابت برای انقباض های مجموعه – مقدار توسط نادلر آغاز شد. این نظریه سپس توسط ریاضی دانان بسیاری بسط و گسترش یافت. در این پایان نامه مفهوم انقباض های مجموعه – مقدار در فضاهای متریک معرفی می شود و به بررسی شرایطی می پردازیم که لزوم وجود یک نقطه ثابت را برای چنین نگاشت هایی تضمین می کند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اصفهان - پژوهشکده علوم 1392

در این پایان نامه اصل تغییراتی اکلند برای بهینه سازی برداری با استفاده از متریک مجموعه مقدار، نگاشت اختلال یافته مجموعه مقدار و مفهوم کران داری مخروط مورد بررسی قرار می دهیم. همچنین با معرفی ?- تابع ضعیف، اصل تغییراتی اکلند را برای نگاشت مجموعه مقدار f از فضای متریمک x به قضای برداری توپولوژیکی هاسدورف مرتب شده به وسیله ی مخروط محدب kبه دست می آوریم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه زنجان - دانشکده علوم انسانی 1389

دراین پایان نامه، ابتدا اصل kkm را مورد مطالعه قرار داده و پس از معرفی صورتهای مختلف اصل kkm به کاربرد این اصل در نظریه نقطه ثابت خواهیم برداخت. سپس با معرفی فضاهای متریک ابرمحدب و ویژگی های منحصربفرد این فضاها و همچنین ارتباط فضاهای ابرمحدب باسایر فضاهای متریک، قضایای kkm و کی فن در فضاهای متریک ابرمحدب را مورد مطالعه قرارداده ایم. در انتها نیز چند مساله غیرخطی درفضاهای ابرمحدب را آورده ایم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده علوم ریاضی 1391

هدف اصلی در این پایان نامه، بیان قانون قوی اعداد بزرگ و قضیه حد مرکزی برای متغیرهای تصادفی مجموعه-مقدار فازی نسبت به متر هاسدورف توسعه یافته می باشد.برای این منظور، ابتدا مفاهیم مربوط به متغیرهای تصادفی مجموعه-مقدار به خصوص متغیرهای تصادفی مجموعه-مقدار فازی رامعرفی می کنیم.سپس نتایجی را ثابت می کنیم که به عنوان مقدمه ای بر اثبات قانون قوی اعداد بزرگ به شمار می روند.پس از آن قانون قوی اعداد بزرگ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1391

در این پایان نامه قضایای نقطه ی ثابت را برای نگاشت های فازی در فضای متریک کامل بیان می کنیم. نتایج اصلی ما بعضی از نتایج معروف قضایای نقطه ی ثابت را تعمیم و گسترش می دهد. ابتدا قضیه ای را با استفاده از مفهوم w-فاصله که توسط کادا ات آل ارائه شده و سپس توسط آممیا و تاکاهاشی تعمیم یافته است را بیان کرده بعد از آن قضیه ای را بدون استفاده از پیوستگی نگاشت مجموعه مقدار برای نگاشت های فازی در فضای م...

Journal: : 2023

تصویربرداری مقطع‌نگاری نوترونی یکی از کاربردهای مدرن رآکتورهای تحقیقاتی در سرتاسر جهان به‌شمار می‌رود. تلفیق قابلیت نمایش سه‌بعدی با ویژگی‌های منحصر به فرد برهم‌کنش نوترون مواد، می‌تواند اطلاعات بسیار ارزشمندی ساختار داخلی مواد و تجهیزات را اختیار محققین قرار ‌دهد. این تحقیق، تأثیر هندسه داده‌برداری تجربی روش بازسازی تصویر بر کیفیت تصاویر سامانه رآکتور تهران براساس شاخص وضوح میزان تولید نویز مو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1391

مفهوم مجموعه مرتب خطی مقدار، تابع صعودی اکید، شبه متریک، مزدوج یک شبه متریک و کامل دوسویی را تعریف کرده و نشان می دهیم توابع صعودی اکید شبه متریک ایجاد می کنند. همچنین مفهوم مجموعه مرتب خطی مقدار (x,?) را تعریف نموده و ثابت می کنیم ? از x,d_?) ) به توی فضای شبه متریک (r^+,u)یک ایزومتری می باشد. در ادامه مفهوم کامل بودن مجموعه مرتب خطی مقدار را بیان کرده و نشان می دهیم کامل شده هر مجموعه مرتب خط...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393

در این پایان نامه ابتدا فضاهای متریک مخروطی، نوعی متریک و متریک مختلط مقدار را معرفی و خواص مربوط به هر یک از آن ها را بررسی می نماییم. سپس با ارزیابی و تعمیم شرط انقباضی باناخ بر فضاهای فوق، زمینه را برای اثبات و تعمیم قضیه نقطه ثابت بر آن ها فراهم می سازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1391

بعد متریک گراف ها فرض کنید ‎$g$‎ یک گراف همبند و ‎$w={w_1,w_2,ldots,w_ k}$‎ زیرمجموعه ای مرتب از ‎$v(g)$‎ باشد. برای هر رأس دلخواه ‎$v$‎ از ‎$g$‎ ‎{fgi{g:mrep}}‎ رأس ‎$v$‎ نسبت به ‎$w$‎ عبارت است از بردار ‎$k$-‎تایی ‎vspace*{4mm}‎ ‎$$r(v|w):=(d(v,w_1),d(v,w_2),ldots,d(v,w_k)).$$‎ اگر کدهای متریک رأس های متمایز ‎$g$‎ نسبت به ‎$w$‎ از هم متمایز باشند، ‎$w$‎ یک مجموعه کاشف برای ‎$g$‎ نامیده...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید