نتایج جستجو برای: ماتریس Q
تعداد نتایج: 131327 فیلتر نتایج به سال:
برای هر عدد صحیح مثبت m و به ازای w=(q^(m+1)-1)/(q-1) می توان یک (vw,kq^m,?q^m)- طرح متقارن ساخت. اگر h یک ماتریس آدامار منظم با جمع سطری 2h، m یک عدد صحیح مثبت و q=?(2h-1)?^2 توانی از یک عدد اول باشد در این صورت با استفاده از bgw((q^(m+1)-1)/(q-1),q^m,q^m-q^(m-1)) می توان طرح متقارن با پارامترهای ((4h^2 (q^(m+1)-1))/(q-1),(2h^2-h) q^m,(h^2-h) q^m) ساخت هرگاه h در شرایط خاصی صدق کند. چنین شرایط...
هدف از این پایان نامه بررسی وجود جوابهای هموکلینیکی برای سیستم نا خود گردان مرتبه دوم?q ?+aq ?-l(t)q+w?_q (t,q)=0 می باشد به طوری که a یک ماتریس ثابت نامتقارن، l ?(r,r^n) ماتریس معین مثبت و متقارن برای همه t?r، w(t,q)=a(t)v(q) که در آن a:r?r تابعی پیوسته وv?c^1 (r^n,r) است. در پایان با استفاده از دو محک وجودی، وجود حداقل یک جواب هموکلینیکی غیر بدیهی تضمین می کنیم.
در این پایان نامه نشان خواهیم داد، چنانچه یک ماتریس وزنی تعمیم یافته و یا به اختصار یک bgw با پارامتر های ((q^(m+1)-1)/(q-1),q^m,q^m-q^(m-1) )روی یک گروه ضربی g داشته باشیم، به طوری که q=?(2h-1)?^2 توانی از یک عدد اول و m یک عدد صحیح مثبت باشد، همچنین با فرض h=±3^n، و وجود یک ماتریس آدامار منظم با حاصل جمع سطریh2، و طرح های بلوکی متقارن با پارامتر های (?4h?^2,?2h?^2-h,h^2-h)، طرح هایی متقارن با...
در این پایان نامه به بررسی بود و نبود برخی از ماتریس های وزنی دورانی می پردازیم. برای این کار، ابتدا به تعریف ماتریس های وزنی و ماترس های وزنی دورانی می پردازیم که از مفهوم حلقه ی گروهی، برای سهولت در مطالعه ی این ماتریس ها استفاده می کنیم. به کمک شبه مجموعه های تفاضلی ساختاری را ارائه می دهیم که اگر q توانی از یک عدد اول باشد، بتوان cw (q^2+q+1,q^2) را ساخت. سپس نشان می دهیم برای nهایی ...
وجود جواب های معین مثبت معادله ی ماتریسیx^s+a^* x^(-t) a=q که در آن a یک ماتریس نامنفردn ×n و q یک ماتریس معین مثبت n×n است، در موارد زیادی بررسی شده است. در این پایان نامه جواب های معین مثبت این معادله ی ماتریسی که0,?)]s,t ? مورد مطالعه قرار گرفته است. نانو کاربردی های زیادی در زندگی ما دارد و ریاضی در نانو کاربرد دارد. همچنین کاربردهای معادله ی ماتریسی x+a^t x^(-1) a=q در تحقیقات نانو بررسی ش...
در این پایان نامه برخی از نامساوی های عددی را برای عملگرهای فشرده بررسی می کنیم. اگر چه توسیعی از کارهای مربوط به نامساوی های عملگری بویژه توابع یکنواعملگری و محدب عملگری وجود دارد اما نتایج بیشتری در مورد نامساوی های عملگری بواسطه ی طیف یا مقادیر ویژه بدست می آیند. تامسون اولین نامساوی اساسی، یعنی نامساوی مثلث را برای ماتریس های مختلط n*n اثبات نمود. نتایج تامسون توسط آکمان-اندرسن و پدرسن به ...
دادن قرار با که است ماتریس-(0و 1و-1)یک ، m مانند حقیقی ماتریس یک علامتی الگوی ماتریس های تمام از مجموعه ای q(m) کنید فرض .می آید دست به درایه آن جای به درایه هر علامت معکوس های اگر ،m ? ?q(m)هر برای .است یکسان mبا آن ها علامتی الگوی که باشد حقیقی درازین معکوس ، m که می شود گفته ، باشند داشته یکسانی علامتی الگوی ( m) ? و m درازین علامت دار، دارد. در این پایان نامه ، توصیف کاملی برای یک کلاس ...
دادن قرار با که است ماتریس-(0و 1و-1)یک ، m مانند حقیقی ماتریس یک علامتی الگوی ماتریس های تمام از مجموعه ای q(m) کنید فرض .می آید دست به درایه آن جای به درایه هر علامت معکوس های اگر ،m ? ?q(m)هر برای .است یکسان mبا آن ها علامتی الگوی که باشد حقیقی درازین معکوس ، m که می شود گفته ، باشند داشته یکسانی علامتی الگوی ( m) ? و m درازین علامت دار، دارد. در این پایان نامه ، توصیف کاملی برای یک کلاس ...
برای عدد اول $q$ و عدد صحیح $jleq q$، کد $c(q,j)$ دسته ای از کدهای آرایه ای با ماتریس بررسی توازن خلوت است که ساختار جبری مناسبی دارند. در این پایان نامه کمترین فاصله $d(q,j)$ از این کدها را بررسی می کنیم. ابتدا ثابت می کنیم که کد تحت گروه دوبار متعدی از جایگشت های آفین پایا است سپس برای هر عدد اول $q>7$ نشان می دهیم $d(5,4)=8$، $...
فرض کنید $a$ و $b$ ماتریس های نا منفی باشند. یک کران بالا روی شعاع طیفی $ ho (a circ b)$ به دست آمده است. ضمنا، یک کران پایین جدید روی کوچک ترین مقدار ویژه $q(a star b)$ برای ضرب فن، و یک کران پایین روی مینیمم مقدار ویژه $q(b circ a^{-1})$ برای ضرب هادامارد $b$ و $a^{-1}$ دو $m$ - ماتریس نامنفرد $a$ و $b$ داده شد...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید