نتایج جستجو برای: قضیه لیوویل
تعداد نتایج: 3265 فیلتر نتایج به سال:
در این مقالهمسئله با مقادیر مرزی اشتورم-لیوویل، قضیه نقطه ثابت، ...
در این پایان نامه به بررسی چند نوع معادله دیفرانسیل کسری با مشتق کاپوتو یا ریمان لیوویل با شرایط مرزی انتگرالی، متناوب و غیر متناوب می پردازیم. همچنین چند شمول دیفرانسیل مرتبه کسری با شرایط مرزی انتگرالی، سیگما، خاص و غیر تناوبی را مورد بررسی قرار خواهیم داد. در این راستا از قضایای متعدد نقطه ثابت برای وجود جواب معادلات و شمول های دیفرانسیل کسری با شرایط مرزی مختلف استفاده خواهیم نمود.
در این پایان نامه مفاهیم پایداری یرز- اولام- راسیاس و پایداری یرز- اولام معادلات انتگرالی کسری معین را معرفی کرده و قضایای پایداری را با استفاده از قضیه ی نقطه ثابت درفضای متریک کامل تعمیم یافته ارایه می کنیم و پایداری یرز- اولام- راسیاس و پایداری یرز- اولام را برای معادلات انتگرالی ولترای کسری بررسی می کنیم.
هدف از این رساله، بررسی و ایجاد مساله معکوس معادلات اشتورم-لیوویل است. در مسایل معکوس طیفی، هدف به دست آوردن ضرایب در معادله با بکارگیری داده های طیفی است. مساله طیفی معکوس را با توسیع نتیجه هاچستات بر اساس روش عملگر تبدیل برای مساله معکوس اشتورم-لیوویل با شرایط مرزی ناپیوسته بحث می کنیم. علاوه بر این، بحث در باره نتایج منحصربفردی عملگر اشتورم-لیوویل را به یک تعداد متناهی از نقاط ناپیوستگ...
در این پایان نامه، نخست مفهوم محاسبات کسری معرفی شده و تاریخچه ی آن بیان می گردد. در ادامه، چند روش مهم برای حل مسائل مقدار مرزی از معادلات با مشتقات کسری به طور مختصر مورد بررسی قرار می گیرد که پایه و اساس همگی آن ها قضایای نقطه ثابت می باشد. در نهایت به بیان قضیه ی نقطه ثابت لگت-ویلیامز می پردازیم و از آن برای حل برخی مسائل مقدار مرزی از معادلات با مشتقات کسری استفاده می کنیم. محاسبات کسر...
در این رساله دستگاه معادلات دیفرانسیل خطی مرتبه اول egin{eqnarray*} frac{dy_{1}}{dt}=( i ho r_{2}(t)+frac{p(t)}{i ho r_{1}(t)})y_{2} , qquad frac{dy_{2}}{dt}= i hofrac{1}{r_{1}(t)}y_{1} , quad tin[a,b] end{eqnarray*} را در نظر می گیریم که در آن توابع حقیقی $r_{1}$ و $r_{2}$ می توانند صفرهایی درون $(a,b)$ داشته باشند. در ابتدا با تعویض متغیرهای مناسبی، دستگاه فوق را به یک ...
برای معادله ی اشتورم-لیوویل با پارامترویژه در شرایط مرزی در حالت های اسکالر و ماتریسی، یک فرمول اثر منظم مرتبه ی اول را به دست می آوریم. همچنین برای سیستم های شرودینگر روی گراف های متری، ابتدا با کمک قضیه ی روشه، بسط مجانبی مقادیر ویزه ی بزرگ را به دست می آوریم و سپس فرمول اثر منظم را برای سیستم های مذکور با استفاده از روش های مانده در انالیز مختلط به دست می آوریم و در آخر این فرمول ها را برای ...
اولین مقالۀ مشترک استورم و لیوویل در سال ١٨٣٧ ، مقدمه ای بر نظریۀ عام معادلات دیفرانسیل استورم-لیوویل به شمار می آید. نظریه ای که نقشی محوری در بخش عمده ای از آنالیز ریاضی نوین بازی کرده و در طول سال های متوالی در تجزیه و تحلیل بسیاری از مسائل مربوط به ریاضیاتِ فیزیک و دیگر شاخه های علم به کار گرفته شده است. در این نوشتار، تاریخچه ای از نظریۀ استورم-لیوویل و سرچشمه های پیدایش آن را بیان می کنیم ...
در این پایان نامه، معادلات دیفرانسیل از مرتبه کسری با سه شرط مقدار اولیه و شرایط مرزی به ترتیب انتگرالی و غیر موضعی مورد مطالعه قرار می گیرد. در اینجا مشتق کسری از نوع ریمان-لیوویل می باشد. در این معادلات از روش جواب های بالا و پایین برای اثبات وجود جواب استفاده کردیم و همچنین با کمک توابعی مانند تابع گرین وتابع کنترلی و استفاده از برخی قضایای نقطه ثابت، همچون قضیه نقطه ثابت شودر و قضیه نقطه ...
چکیده: در این پایان نامه ابتدا به معرفی فضای فاز و کروشه پواسون می پردازیم. سپس انتگرال پذیری برای نوسانگر هماهنگ را مورد بحث قرار می دهیم. در ادامه تعریف سیستم انتگرال پذیر، قضیه لیوویل و زوج lax را بررسی کرده و وجود ماتریس- r کلاسیک در انتگرال پذیری لیوویل و خاصیت تقابل کمیت های پایستار در ساختار پواسون را مطرح می کنیم. سپس ضمن مرور مفاهیم دو جبرهای لی و قضایای مربوط به آن، جبرهای لی حقیقی د...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید