نتایج جستجو برای: فوق اشتقاق درونی
تعداد نتایج: 44311 فیلتر نتایج به سال:
این پایان نامه از چهار فصل تشکیل شده که در فصل اول پیشنیازها جمع آوری گردیده و در فصل دوم یک مشخص سازی برای فوق اشتقاق های درونی ارائه شده است. در فصل سوم پایان نامه به بررسی مقدار نرم یک اشتقاق پرداخته ایم و در فصل چهارم نوع خاصی از عملگرها موسوم به اشتقاق های توانی را مورد مطالعه قرار داده ایم.
در این پایان نامه نشان می دهیم که اگر g یک فوق گروه باشد، l^1 ?(g)?^(**) میانگین پذیر است، اگر و فقط اگر g متناهی باشد. همچنین ثابت می کنیم که اگر دوگان فضای توابع پیوسته ی یکنواخت چپ (luc?(g)?^*)، میانگین پذیر باشد، آن گاه g فشرده و m(g)میانگین پذیر است. سرانجام اگر m?(g)?^(**) میانگین پذیر باشد، آن گاه g متناهی است.
در این پایان نامه، اشتقاق ها، فوق اشتقاق ها و انواع آنها مورد بررسی قرار می گیرند. فرض کنیم a یک جبر باشد، یک نگاشت خطی مانند d را یک اشتقاق می گوییم اگر برای هر a ,b در a داشته باشیم d (ab) = ad (b) + d (a )b. مفهوم جدیدی به نام (m,n)-اشتقاق دوگانه را در این رساله معرفی می کنیم که تعمیمی از مفهموم اشتقاق است. فرض کنیم m و n نگاشت هایی خطی روی a باشند، نگاشت خطی d روی a را یک (m,n)-اشتقاق دوگان...
در سال 1940 ،اولام سوالی درباره نگاشت های تقریبی مطرح کرد به این مضمون که ((تحت چه شرایطی یک همریختی تقریبی به یک همریختی نزدیک می شود؟(( در سال 1941 ،هایرزجوابی مثبت به سوال اولام درفضاهای باناخ ارائه داد در واقع ثابت کرد اگر ??0 و f:x?y نگاشتی از فضای نرم دار x به فضای باناخ y باشد به طوری که ?f(x+y)-f(x)-f(y)??? (x,y?x) (1) آن گاه نگاشت جمعی منحصر به فرد t:x?...
در این پایان نامه، به سه مفهوم کلی میانگین پذیری، میانگین پذیری ضعیف و -n میانگین پذیری ضعیف دوگان دوم جبر باناخ a می پردازیم. در ابتدا مفهوم میانگین پذیری دوگان دوم جبر باناخ را بیان کرده و نشان خواهیم داد که جبر باناخ a خاصیت میانگین پذیری را از دوگان دوم خود به ارث می برد. در ادامه به بیان مفهوم آرنز منظمی نگاشت های دوخطی روی فضاهای نرم دار می پردازیم، سپس شرایطی را که تح...
در این پایان نامه هم اشتقاق ها روی هم جبر ماتریس های حقیقی و هم جبر ماتریس های هم جبری مورد بررسی قرار می گیرند. هم جبر (c,?,?) روی میدان ?، عبارتست از فضای ?-خطی c به همراه نگاشت های ?-خطی ? : c ? c? c و ?: c ? ? به طوری که i ? ?) ? = (? ? i) ? و i? ?) ? = (?? i) ?. نگاشت ?-خطی f روی ?-هم جبر (c,?,?) یک هم اشتقاق نامیده می شود، اگر ?f = (i? f + f? i) ?. با اثبات این مطلب که هم جبر ماتریس های ح...
فرض کنید e یک مدول هیلبرت بر روی جبر a و (e) جبر عملگرهای الحاق پذیر روی e باشد. نشان می دهیم اگر a جابجایی و یکدار باشد آن گاه هر اشتقاق روی (e) یک اشتقاق درونی است و اگر a جابجایی و دارای یکه تقریبی شمارا باشد آن گاه درونی بودن اشتقاق ها روی مجموعه عملگرهای فشرده درونی بودن اشتقاق ها روی (e) را نتیجه می دهد. هم چنین ثابت می کنیم اگر a یکدار باشد به طوری که هر اشتقاق روی a درونی است، آن گاه هر...
یکی از مسائل اصلی نظریه اشتقاق ها، اثبات پیوستگی خود به خود اشتقاق ها و درونی بودن اشتقاق های پیوسته است. در این ارتباط بررسی وجود اشتقاق های غیرپیوسته و غیر داخلی روی جبرهای توپولوژیک مختلف از اهمیت ویژه ای برخوردار است. با تلفیق دو ایده ی مطرح شده در بالا، یک مسئله اساسی، مطالعه ی جبرهایی است که فقط اشتقاق های داخلی دارند. ما در نظر داریم که یک شرح کاملی از اشتقاق ها روی جبر (s(m متشکل از همه...
در این پایان نامه به چند سوال باز در نظریه ی میانگین پذیری تقریبی جبرهای باناخ پاسخ داده می شود. ابتدا مثالی از جبرهای باناخی ارائه می شود که میانگین پذیر تقریبی کراندار هستند اما واحد تقریبی کراندار ندارند. این پاسخ سوال بازی بود که سال 2000 قهرمانی و لوی وقتی مفهوم میانگین پذیری تقریبی را معرفی کردند مطرح بود. برای c_0 مجموع مستقیمی از جبرهای باناخ میانگین پذیر شرایطی را فراهم می کنیم تا میان...
این پایان نامه درسه فصل تنظیم شده است : فصل اول ، مقدمات و خواص اساسی . فصل دوم ، اشتقاق های درونی روی جبر که بردشان جز ستون آن جبر است . فصل سوم ، اشتقاق های پیوسته روی جبر که بردشان جز ستون آن جبر است.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید