نتایج جستجو برای: فضای موضعا فشرده
تعداد نتایج: 29275 فیلتر نتایج به سال:
فرض کنیم a یک – جبر باناخ و a دوگان دوم a مجهز به ضرب آرنز اول باشد. در این پایان نامه به بررسی وجود برگشت روی a حاصل از توسیع برگشت روی a می پردازیم خصوصا دوگان دوم جبرهای گروهی وابسته به گروه موضعا فشرده ی g مانند luc(g), l1(g) و wap(g) را مورد مطالعه قرار می دهیم.همچنین یک مشخصه سازی از برگشت دلخواه روی جبر گروهی l1(g ) و جبر اندازه ی(g) m وابسته به g را ارایه می دهیم و شرط برابری این برگشت ...
این پایان نامه شامل 5 فصل می باشد. در فصل اول به بیان پیش نیازها و مقدمات لازم برای ارایه مطالب اصلی پرداخته ایم. در فصل دوم نگاهی کلی نسبت به مفهوم میانگین پذیری گروههای فشرده موضعی و میانگین پذیری جبرهای باناخ خواهیم داشت. در فصل سوم تعاریف شبه میانگین پذیری و شبه انقباض پذیری بیان می گردد و چند خاصیت اساسی از جبرهای باناخ شبه میانگین پذیر و شبه انقباض پذیر و همچنین ایده آلهای این جبرها ذکر م...
نشان می دهیم برای فضای ثوپولوژی x مجموعه توابع پیوسته روی x که در بی نهایت صفر میشوند یک حلقه است. نشان می دهیم فضای توپولوژی x موضعا فشرده است اگر و تنها اگر مجموعه متمم صفر مجموعه های حلقه توابع پیوسته روی x که در بی نهایت صفر می شوند شک پایه برای مجموعه های باز x باشند. دو فضای موضعا فشرده x و y همسانریخت توپولوژیک هستند اگر و تنها اگر حلقه توابع پیوسته روی x که در بی نهایت صفر می شوند با حل...
فرض کنید g یک گروه موضعا" فشرده باشد. همچنین فرض کنید n یک زیرگروه بسته و نرمال g و گروه g/n فشرده باشد. در این پایان نامه به کمک فشرده سازی های n فشرده سازی هایی برای g ساخته شده است . بعضی خواص فشرده سازی g را می توان از روی فشرده سازی n بدست آورد. در پایان نتایج کار در حالتی که g گروه جمعی اعداد حقیقی و n گروه اعداد صحیح باشد مورد بررسی قرار گرفته شده است .
مطابق معمول حلقه توابع پیوسته حقیقی مقدار روی فضای تیخونف xرا با (c(xنمایش می دهیم. مطمئناً اگرxوyفضاهای فشرده حقیقی، و ( c(x و (c(y یکریخت باشند آنگاه، xو yهمئومورف هستند یعنی، c(x)، x را مشخص می کند. دلیل توجه به فضاهای فشرده حقیقی این است که، اگرx فشرده حقیقی نباشد (c(x وc(?x) یکریخت اند، در حالی که xو ?x ،که ?x فشرده شده حقیقی(هویت) از xاست، همئومورف نیستند. در این پایا...
فرض کنید g گروهی با خاصیت موضعا فشرده باشد، بطوریکه همزمان یک فضای موضعا فشرده هاسدروف است که عملگرهای گروهی آن پیوسته باشند. همچنین فرض کنید که یک تابع وزنی تعریف شده بر گروه g باشد (این تعریف در شماره 2.1.11 ذکر شده است ). هدف ما آن است که تمام عملگرهای خطی و کراندار t را مشخص کنیم بطوریکه t: l1( )--->b باشد و در شرط t (f*g) f*t(g) صدق کند، جائیکه b یک فضای باناخ شامل رادون میجرهای تعریف شده ...
هر گروه توپولوژیک موضعا فشرده یک اندازه پایای چپ دارد که آن را اندازه هار می نامیم. فضای lp متناظر با این اندازه را در نظر می گیریم. روی این فضا عملی به نام پیچش تعریف می کنیم. حدس lp بیان می کند که فضای lp تحت عمل ئیچش بسته است اگر و تنها اگر گروه توپولوژیک مورد نظر فشرده باشد.
این پایان نامه به بحث در مورد ابر گروه می پردازد به طور غیر رسمی ابرگروه یک فضای موضعا فشرده ای است.که فضای برداری اندازه های رادون آن با یک پیچش به یک جبر باناخ تبدیل می شود.
فضای مترپذیر x را یک توسیع متری فضای مترپذیر y می نامیم هرگاه x در y چگال باشد. در این پایان نامه یک نگاشت یک به یک و ترتیب برگردان از مجوعه توسیع های متری تک نقطه ای فضای مترپذیر نافشرده و موضعا فشرده x به فضای صفر-مجموعه های باقیمانده استون-چک x تعریف می کنیم.
فرض کنید l رسته همه گروه های آبلی موضعاً فشرده و ریخت های آن همریختی های پیوسته باشند. در ابتدادومین کوهمولوژی تحدید شده و گروه توسیع های با برش بسته a را وقتی که g موضعاً فشرده، تفکیک پذیر و متر پذیر و a یک زیر گروه نرمال بسته در g باشد، تعریف می کنیم. سپس دنباله های دقیق کوتاه به طور فشرده تولید شده در l را معرفی کرده و ثابت می کنیم که اگر g سیگما فشرده و a یک زیر گروه نرمال بسته و فشرده از g ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید