نتایج جستجو برای: فضای قویا صفربعدی
تعداد نتایج: 26284 فیلتر نتایج به سال:
برخنر در1966 تعدادی پیوستارm معرفی کرد که گروه خودهمسانریختی از آنها (h(m تماما ناهمبند بوده ولی صفربعدی نیستند. در 2001 برخنر و کاوامارو نشان دادند که این گروهها تقریبا صفربعدی هستند و لذا به سبب قضیه ای از تیمچاتین و اورستیخن دقیقا یک بعدی هستند. در این پایان نامه با نشاندن فضای اردوش کامل در (h(m نشان داده می شود که (h(m یک فضای جهانی برای کلاس فضاهای تقریبا صفربعدی است. ضمنا به عنوان نتیجه ...
در این طرح انواع فضاهای فشرده را تعریف کرده سپس با بیان فضای صفربعدی رابطه فضای clp-فشرده و فضای فشرده را بیان می کنیم. سپس رابطه ی بین انواع فضاهای فشرده با یکدیگر را به صورت قضیه مطرح می کنیم و در نهایت شبه مولفه و مولفه همبندیرا تعریف کرده و به قضایای مربوط به آن می پردازیم.
در این پایان نامه به بررسی ویژگی های حلقه های صفربعدی می پردازیم. آنچنان که در اغلب کتاب های جبر مقدماتی می توان ملاحظه کرد، هر ایدآل ماکسیمال از یک حلقه ی تعویض پذیر، ایدآلی اول از آن حلقه نیز می باشد. حلقه هایی که در آن ها عکس گزاره ی اخیر نیز برقرار است به حلقه های صفربعدی معروف اند و از دیر باز مورد علاقه ی جبردانان بوده اند. از این قبیل حلقه ها می توان به حلقه های آرتینی، بولی و دامنه ی ای...
در سال 1940 پاول اردوش cite{h8} دو فضای توپولوژیک جالب توجه را معرفی کرد، که امروزه آنها را با نامهای فضای اردوش و فضای اردوش کامل می شناسیم. هرکدام از این دو فضا در فضای هیلبرت $ ell^2 $ متشکل از دنباله های حقیقی با مربع جمعپذیر ساخته می شوند. فضای اردوش $ er $ زیرفضایی از $ ell^2 $ می باشد، بطوریکه تمامی مولفه های آن گویا هستند و فضای اردوش کامل $ erc $، هر مولفه اش از دنباله ی هم...
یک r-مدول راست m را قویا دیو می نامیم هرگاه برای هر زیرمدول n از m، tr(n,m)=n. شرایط معادل برای این که یک مدول قویا دیو باشد، بررسی شده است. اگر m کاهشی و قویا دیو باشد، آنگاه end(m ) یک حلقه منظم قوی است و عکس این مطلب اگر r یک حوزه صحیح ددکیند و m تابی باشد درست است. اگر حلقه r یک حوزه صحیح ددکیند باشد،آنگاه m قویا دیو است اگروتنهااگر m?r یا m یک مدول تابی و دیو باشد. روی حلقه های تعویضپذیر، ...
در این پایان نامه، ابتدا تعریفی از حلقه ی قویا تمیز ارائه می دهیم و نشان می دهیم اگر حلقه ی r قویا تمیز باشد، آنگاه هر ایده آل این حلقه قویا تمیز است. همچنین حلقه هایی مانند r را بررسی می کنیم که حلقه ی m_n (r)، قویا تمیز نیست. در ادامه شرایطی را ارائه می دهیم که برای هر n>1، m_n (r) قویا تمیز است. بعلاوه، این نتایج را به حلقه ی ماتریس های بالا مثلثی گسترش می دهیم. در ادامه از حل پذی...
عضو a در حلقه r خوش ترکیب نامیده می شود هر گاه به صورت مجموع یک عضو خودتوان و یک عضو یکه در r نوشته شود. در این نگارش به شرایطی که فضای توپولوژی x باید داشته باشد تا حلفه توابع پیوسته (c(x خوش ترکیب شود پرداخته می شود. همچنین ثابت می شود (c(x خوش ترکیب است اگر و تنها اگر (c(x قویاٌ صفربعدی باشد، اگر و تنها اگر (c(x شامل یک ایدآل اول خوش ترکیب باشد. همچنین ثابت می شود اگر e عضوی خودتوان در حلفه r...
فرض کنید یک حلقه است عنصر ? a را قویاً کلین نامند هرگاه a = + که و به ترتیب عنصر خودتوان و یکه حلقه هستند وضمناً = . حلقه را قویاً کلین نامند هرگاه هر عضو آن قویاً کلین باشد. در این تحقیق شرایطی را روی حلقه موضعی مانند بررسی می کنیم که نتیجه می دهند یک حلقه قویاً کلین است.در ضمن نشان می دهیم که این حالت برای حلقه های موضعی جابجایی و بعلاوه تحت شرایطی برای حالت های دیگر از حلقه های موضعی نیز برقرار است
در این پایان نامه ابتدا با مدول های هاپفین و هم هاپفین آشنا می شویم و در ادامه نشان می دهیم که رده مدول های قویا هاپفین (قویا هم هاپفین) بین رده مدول های هاپفین (هم هاپفین) و رده مدول های نوتری (آرتینی ) قرار دارد. همچنین نشان می دهیم برای حلقه جابه جایی a، حلقه چندجمله ای های [a[x قویا هاپفین است اگر و فقط اگر a قویا هاپفین باشد.
در این پایان نامه دو ویژگی مهم از طیف عناصر در f-جبرها به دست آمد. در حقیقت اثبات شده است که درf-جبر یکدار بنیادی و قویا کراندار a ، طیف عنصر a یا همان sp(a) ، فشرده است. علاوه بر این اگر فضای دوگان a یا همان a^* ، عناصر a را جدا سازد sp(a) مخالف تهی می باشد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید