نتایج جستجو برای: فضاهای متری مخروط
تعداد نتایج: 15234 فیلتر نتایج به سال:
فضاهای متری مخروط تعمیمی از فضاهای متری معمولی هستند که با جایگزینی فضای باناخ حقیقی به جای اعداد حقیقی تعریف می شوند.این فضاها برای نخستین بار در سال 2007 توسط دو ریاضیدان چینی ارایه شدند.این دو محقق قضایای نقطه ثابت برای نگاشت های انقباض در فضاهای متری مخروط را با استفاده از ایده های قضایای نقطه ثابت در فضاهای متری کامل تعمیم بخشیدند.در این رساله بعد از معرفی فضاهای متری مخروط متریک هاسدورف ر...
فضاهای متری مخروط، تعمیمی از فضاهای متری هستند. در واقع چون مجموعه ی اعداد حقیقی (r) یک فضای باناخ حقیقی است، لذا فضاهای متری حالتی خاص از فضاهای متری مخروط می باشند. تعریف فضاهای متری مخروطبرای نخستین بار در سال 2007 توسط هوانگ و ژانگ ارائه شد. این دو محقق، قضایایی راجع به نقطه ثابت نگاشت های صادق در شرایط انقباضی مختلف را به این فضاهای تازه تعریف، تعمیم بخشیدند. پس از آن، نویسندگان بسیاری با...
درفصل اول این رساله اطلاعات پایه ای وسودمندی پیرامون فضاهای متری ؛فضاهای متری تام ؛فضاهای نرمدار،پیوستگی یکشکل ،اصل انقباض،اثبات قضیه مشهور نقطه ثابت باناخ ارائه می شود .در فصل دوم تعاریف مربوط به فضای متریک مخروط که تعمیمی از فضاهای متریک است بیان می گرددوتمامیت در فضاهای متریک مخروط توصیف می شود . درفصل سوم اثبات چند قضیه نقطه ثابت در فضاهای متریک آورده شده است و سپس در فصل چهارم به نقاط ثابت...
چکیده : این پایان نامه شامل چهار فصل می باشد در فصل اول برخی از تعریف ها ، مفاهیم و لم های اساسی که در فصول بعدی مورد استفاده قرار می گیرند ارائه می گردد . در فصل دوم مخروط ، مخروط نرمال ، مخروط منظم ، و برخی ویژگیهای آنها معرفی شده و سپس فضای متریک مخروطی را بیان کرده و برخی تعریف ها و قضیه ها در فضای متری را به فضای متریک مخروطی تعمیم داده ایم و سپس تعدادی از قضیه های نقطه ی ثابت نگاشت های ...
چکیده ندارد.
در سالهای اخیر مطالعات زیادی روی فضاهای متریک مخروطی انجام شده است . در این پایان نامه خواص توپولوژیکی فضاهای متریک مخروطی و متریک پذیری این فضاها بررسی شده و نشان داده ایم که فضاهای متریک مخروطی تعمیمی از فضاهای متریک معمولی هستند همچنین نکاتی در خصوص هم ارزی نتایج قضیه نقطه ثابت بیان می کنیم.
در این پایان نامه، مفهوم فضاهای شبه متری و فضاهای شبه متری فازی و مسیله پیدا کردن تعریف مناسب از کامل بودن برای این فضاها مورد بررسی قرار گرفت. برای حل مسیله، اتدا تعریف مناسبی از دنباله کوشی در فضاهای شبه متری ارایه می گردد. سپس، با استفاده از این مطلب که یک فضای شبه متری، کامل است اگر هر دنباله کوشی در آن همگرا باشد به چگونگی ساختن یک کامل شده از فضای شبه متری پرداخته می شود. و در انتها این ...
تعمیم های بسیاری از فضاهای متریک وجود دارد. فضاهای منگر فضاهای متریک فازی فضاهای متریک تعمیم یافته فضاهای متریک مخروطی مجرد یا فضاهای متریک و نرمال متریک منظم و فضاهای متریک مخروطی منظم و .... در سال 2007 هانک و زانگ فضاهای متریک مخروطی را معرفی کردند بی اطلاع از این که این مفهوم قبلا تحت عنوان فضاها ی متریک و نرمال که در اواسط قرن 20 معرفی شده به کار رفته است در هر دو مورد مجموعه از اعداد حقیق...
در این پایان نامه ابتدا برخی خواص پایه ای فضاهای متری مخروطی را بیان می کنیم سپس نشان می دهیم هر متر مخروطی d روی x یک توپولوژی روی x القا می کند و این توپولوژی مترپذیر است. یعنی متر x×x?r:? وجود دارد که و توپولوژی یکسان روی x القا می کنند. در ادامه مثال هایی از مترهای معمولی که در این خاصیت صدق می کند بیان می شود و در آخر برخی از قضایای نقطه ثابت را مورد بررسی قرار می دهیم.
در این پایان نامه، ویژگی جالبی از فضاهای متری به نام کشسان پذیری را بررسی خواهیم کرد. فضاهای متری کشسانی را می توان به انواع انبساطی-انقباضی، غیر انبساطی-انقباضی و انقباضی-انبساطی تقسیم بندی کرد. فضاهای کشسان انبساطی-انقباضی دارای این ویژگی هستند که هر تابع دو سویی و غیر انقباضی از این فضا به خودش، طولپایی است. فضاهای متری را که انبساطی-انقباضی نیستند، فضاهای کشسان غیر انبساطی-انقباضی می نامیم....
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید