نتایج جستجو برای: عملگر d – هیروتا
تعداد نتایج: 579784 فیلتر نتایج به سال:
در این پایان نامه، یک روش موثر برای به دست آوردن جواب های n- سولیتون برخی از معادلات دیفرانسیل با مشتقات جزیی غیر خطی بیان شده است. ما با استفاده از روش دو خطی هیروتا، جواب های n- سولیتون معادله یkdv: u_t+6uu_x=u_xxx, را برای n=1,2,3 به دست خواهیم آورد. همچنین، روش آشفتگی را برای معادله ی kdv در شکل دو خطی منفرد، که از جانشینی لگاریتمی به دست آمده است، برای تولید جواب های دقیق چند سولیتون ...
پیدا کردن جواب های دقیق معادلات دیفرانسیل غیرخطی با مشتقات جزئی برای فیزیکدانان نظری اهمیت زیادی دارد. از این رو روش هایی که جواب های دقیق را به دست می دهند، مورد توجه قرار می گیرند. در این پایان نامه با استفاده از d-عملگر هیروتا، یک فرم دو خطی برای معادلات غیرخطی با مشتقات جزئی به دست می آوریم. با بهره گرفتن از این فرم دو خطی و روش های مستقیم هیروتا،ehta$,three-wave جواب های دق...
در این مقاله، ما جواب های دقیق معادله کلین گوردون کسری زمانی و دستگاه هیروتا-ساتسوما دوتایی کا دی وی را می سازیم. روش های نیم معکوس و کوردیاشف برای ساختن جواب های دقیق این معادلات استفاده می شود. ما روش نیم معکوس برای ساختن نظریه تغییرات برای معادله کلین گوردون کسری زمانی و دستگاه هیروتا-ساتسوما دوتایی کا دی وی به کار می بریم. بر پایه این فرمول، جواب منفرد می تواند به آسانی با استفاده از روش...
نظریه سولیتون یکی از مهمترین موضوعات در ریاضیات کاربردی و فیزیک به شمار میرود. روش دوخطی هیروتا مشهورترین روشی است که برای ساختن جوابهای سولیتونی چندگانهی معادلات دیفرانسیل غیرخطی بهکار میرود. در این پایاننامه روش دوخطی هیروتا شرح داده شده و با استفاده از آن جوابهای سولیتونی چندگانهی چند معادله تکامل تدریجی بهدست محاسبه میشوند. به منظور (adm) میآیند. سپس جوابهای تقریبی برای آن معادلات با است...
در این رساله، به مطالعه و بررسی عملگرهای ترکیبی روی فضای هاردی وزندارh^2 (?,d) وh^p (?) روی گوی یکه ی بازd می پردازیم. در فصل اول تعاریف و قضایایی را بیان می کنیم که در فصل های بعد مورد استفاده قرار می گیرند، از جمله قضیه ی تکرار دنجوی – ولف، قضیه ی مانتل و... در فصل دوم ابتدا به معرفی فضاهای هاردی وزندارh^2 (?,d) پرداخته و سپس رابطه ی آنها را با فضاهای هاردی وزندارh^2 (?,d) و فضای برگمنa^2 ...
فرض کنید d یک دامنه صحیح، * یک عملگر ستاره روی d و s یک بسته ضربی از d باشد. s را یک مجموعه *g_شکافنده از d می نامند هرگاه برای d ? d ?=? داشته باشیم d = st که s ? s و t ? d به طوریکه به ازای هرs?, t)? = d ،s? ? s).
ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...
معادلات دیفرانسیل جزیی غیرخطی در رشته های مختلف علمی مانند مکانیک سیالات، فیزیک حالت جامد، فیزیک پلاسما، شیمی فیزیک و... از اهمیت بالایی برخوردار هستند. یافتن پاسخ های دقیق این معادلات ما را در درک بهتر پدیده های غیر خطی فیزیکی محیط اطرافمان یاری می کند. معادلات دیفرانسیل جزیی غیرخطی بسیاری هستند که برای آنها پاسخ های سالیتونی وجود دارد. از جمله این معادلات، معادله غیرخطی هیروتا-ساتسوما است، که...
در این پایان نامه، حل معادله ax =y را به روش تکراری که در آن $a$ عملگر -kمثبت معین و -k عملگری بسته و به طور پیوسته d(a) -معکوس پذیر است را روی فضای باناخ بررسی می کنیم. سپس عملگر -kمثبت معین را به عملگر فریشه گسترش می دهیم . همگرایی موضعی به جواب یکتای معادله a x = y را روی فضای باناخ بررسی می کنیم. همچنین عملگر افزاینده قوی که حالت غیرخطی عملگرk-مثبت معین است را معرفی کرده و ...
هدف این پایان نامه به دست آوردن جواب های موج منفرد معادله ی تعمیم یافته ی موج سطحی آب با استفاده از روشهای دوخطی هیروتا ،تانژانت?کتانژانت هایپربولیک و تابع نمایی می باشد. که از روش دو خطی هیروتا برای به دست آوردن جواب های سولیتون چندگانه برای معادله به طور کامل انتگرال پذیربه فرم معادله تعمیم یافته موج سطحی آب استفاده شده است. از روش تانژانت?کتانژانت هایپربولیک برای به دست آوردن جواب های یک ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید