نتایج جستجو برای: عملگرهای نرمال
تعداد نتایج: 14073 فیلتر نتایج به سال:
چکیده:دراین پایان نامه ،ابتدابه مطالعه وبررسی برخی ازنامساوی هابرای عملگرهای خطی کران دارنرمال والحاقی های آن ها درفضای هیلبرت مختلط بااستفاده ازروش های کلاسیک ونوین منسوب به افرادی مانند:بوزانو،دراگمیر،هیل،دانکل-ویلیامز،گلدشتاین ودیگرنویسندگان می پردازیم.همچنین برخی خواص مربوط به بردعددی عملگرهای نرمال مانندشعاع عددی وشعاع طیفی رابیان کرده ونکاتی رادرموردآن هاذکرمی کنیم.یکی ازاساسی ترین وکاربر...
چکیده ندارد.
در این پایاننامه ابتدا تئوری اندازه را بطور کامل برای عملگرهای تر کیبی جزئاً نرمال توصیف می کنیم و سپس عملگرهای جزئاً نرمال را بوسیله عملگرهای ترکیبی کلاس بندی کرده و با ارائه مثالهایی تمایز این کلاسها را بخوبی نشان می دهیم. همچنین عملگرهای معین در نظر گرفته شده روی فضای l2 رادر شرایطی که عضو کلاسهای جزئاً نرمال مختلف هستند توصیف خواهیم کرد و در ادامه روابط بین کلاسهای جزئاً نرمال را بررسی کرده و ت...
در این پروژه شرایطی لازم و کافی برای ماتریس های مختلط n+n مطرح می شوند که تحت آن نرمال باشند همچنین شرایطی نیز برای نرمال بودن عملگرهای خطی فشرده روی فضای هیلبرت تفکیک پذیر در حالت کلی بررسی می شوند در ادامه، چند نامساوی از مقادیر ویژه ی جمع عملگرهای فضای هیلبرت آورده شده است
در این پایان نامه ابتدا عملگرهای شبه m-تا حدی نرمال را معرفی می کنیم و ویژگی هایی از قبیل صعود و نزول متناهی وsvepرا برای این عملگرها بررسی می کنیم و در ادامه ویژگی های طیفی موضعی را برای عملگرهای شبه m-تا حدی نرمال جبری بیان می کنیم و همچنین ثابت شده که اگر tیک عملگر شبه m- تا حدی نرمال جبری باشد، آنگاه قضیه ی نگاشت طیفی برای طیف ویل و طیف نقطه تقریب اساسی برقرار است.
مفهوم برد عددی اولین بار برای عملگرهای خطی روی فضای مختلط n بعدی در سال 1918 توسط تئوپلیتز در ارتباط با مبحث سری های فوریه مطرح گردید. در سال 1987 براون به بررسی وضعیت طیف عملگرهای شبه نرمال پرداخت و پس از آن در سال 1990 آلوتگ تبدیلی را جهت رده بندی عملگرهای شبه نرمال معرفی کرد. با استفاده از این تبدیل می توان عملگرهای خطی کراندار را روی فضای هیلبرت رده بندی نمود. در حالتی که عملگر، نرمال باشد،...
این پایان نامه بر اساس [21] تنظیم شده است و شامل سه فصل است. فصل اول شامل برخی تعاریف و مفاهیم مقدماتی مربوط به رده مختلف از عملگرها می باشد. یکی از تعاریف مهم و اساسی که در آن بیان شده است، تعریف تبدیل آلوسگه می باشد. کسانی چون جونگ footnote{jung}و پیرسی footnote{peracy}نتایج زیادی با استفاده از آن به دست آوردند که رده بیشتری از آن مربوط به عملگرهای غیر نرمال می باشد. در فصل دوم تجزیه قط...
در این پایان نامه ابتدا دو رده از عملگرهای روی فضای هیلبرت به نام های $-(alpha,eta)$ نرمال و $a^*_p$ که تعمیمی از عملگرهای نرمال می باشند، تعریف می شود و نشان داده می شود که تحت شرایط مطلوبی $z+t$ نیز $-(alpha,eta)$ نرمال خواهد بود و در برخی حالت ها مضربی از نرم عملگری این رده عملگرها از شعاع طیفی کوچکتر می باشد. همچنین نشان داده می شود که عملگرهای رده ی $a^*_p$ نرمال گون هستند و صفر ...
در این پایان نامه به بررسی جبرهای شعاع طیفی متناظر با عملگرهای نرمال می پردازیم. یکی از خواص مهم این جبرها که برای مطالعه ما ضروری است این است که شامل جابجاگرهای عملگر مورد بررسی می باشند. نشان می دهیم هرگاه عملگر غیر صفر n نرمال بوده و مضرب اسکالری از همانی نباشد، این شمول اکید است. نتیجه اصلی این پایان نامه نشان دادن این مطلب است که: جبر شعاع طیفی متناظر با عملگر نرمال دارای زیرفضای پایای نا...
در این پایان نامه، ابتدا در زمینه ی عملگرهای خطی و کراندار در فضای هیلبرت که قابل تجزیه به صورت حاصل ضرب دو عملگر خودالحاق هستند، به بررسی می پردازیم و نشان می دهیم یک عملگر نرمال می تواند به حاصل ضرب دو عملگر خودالحاق تجزیه شود اگر و تنها اگر متشابه عملگر الحاقی خود باشد. علاوه بر این مفهوم عملگر خودالحاق تعمیم یافته را که در فضای هیلبرت مختلط تعریف شده است به همراه قضایائی در این باب، ارائه خ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید