نتایج جستجو برای: طبقه‌بندی JEL: .C52

تعداد نتایج: 27717  

Journal: :تحقیقات اقتصادی 0
پیام حنفی زاده استادیار گروه مدیریت صنعتی، دانشگاه علامه طباطبائی، دانشکدة مدیریت و حسابداری حسین پورسلطانی کارشناسی ارشد مدیریت فنّ آوری اطلاعات، دانشگاه علاّمه طباطبائی، دانشکدة مدیریت و حسابداری پریسا ساکتی کارشناسی ارشد مدیریت فنّ آوری اطلاعات، دانشگاه علامه طباطبائی، دانشکدة مدیریت و حسابداری

this article is a comparative study of estimation power of artificial neural networks and autoregressive time series models in inflation forecasting. using 37 years iran’s inflation data, neural networks performs better on average for short horizons than autoregressive models. this study shows usefulness of early stopping technique in learning stage of neural networks for estimating time series...

1998
Simon M. Potter

The standard linear technique of impulse response function analysis is extended to the nonlinear case by de"ning a generalized impulse response function. Measures of persistence and asymmetry in response are constructed for a wide class of time series. ( 2000 Elsevier Science B.V. All rights reserved. JEL classixcation: C22; C51; C52; E32

2010
Chung-Ming Kuan Hsin-Yi Lin

We propose an encompassing test for non-nested linear quantile regression models and show that it has an asymptotic χ2 distribution. It is also shown that the proposed test is a regression rank score test in a comprehensive model under conditional homogeneity. Our simulation results indicate that the proposed test performs very well in finite samples. JEL classification: C12, C52

2012
Michael W. McCracken

In this note we discuss the paper on exchange rate forecasting by Molodtsova and Papell (2012). In particular we discuss issues related to forecast origins and forecast horizons when higher frequency exchange rate movements are predicted using lower frequency quarterly macroaggregates. JEL Nos.: C53, C12, C52

2002
Roselyne Joyeux

In this note we consider the treatment of structural breaks in VAR models used to test for unit roots and cointegration. We give practical guidelines for the inclusion and the specification of intervention dummies in those models. JEL Classification Code: C32, C52, E43.

ژورنال: تحقیقات اقتصادی 2007
حسین پورسلطانی پریسا ساکتی پیام حنفی زاده

این مقاله به بررسی مقایسه‌ای توان شبکه‌های عصبی مصنوعی و سری‌های زمانی خودبازگشت در پیش‌بینی ایستای نرخ تورّم ایران می‌پردازد. در یک بررسی، با استفاده از 37 سال داده‌های تاریخی نرخ تورّم ایران، مدل‌ شبکة عصبی مصنوعی در پیش‌بینی آیندة نزدیک در مقایسه با سری‌های زمانی خودبازگشت، به‎طور متوسط از عملکرد بهتری برخوردار است. در این بررسی، مزایای روش توقّف زودهنگام در مرحلة یادگیری شبکة عصبی برای پیش‌بین...

Journal: :E3S web of conferences 2021

The article offers a strategy for increasing the Russian economy through rational use of country's natural resources. As tools, it is offered to apply functional approach determine critical functions system in order generate additional income improve economy. A scheme influencing control using negative feedback method quality offered. New criteria are proposed assessing work governors and minis...

2009
Oleg Korenok

This paper reviews the analysis of the threshold autoregressive, smooth threshold autoregressive, and Markov switching autoregressive models from the Bayesian perspective. For each model we start by describing a baseline model and discussing possible extensions and applications. Then we review the choice of prior, inference, tests against the linear hypothesis, and conclude with models selectio...

2013
Burcay Erus Ozan Hatipoglu

Recent evaluations of the impact of Turkish healthcare reforms on the efficiency of public hospitals suffer from simultaneous structural changes in the healthcare sector as well as from lack of data on some of the key ingredients of the reform. In this note, we analyze the major obstacles in a fair evaluation of the efficiency of public hospitals taking Sulku(2011)’s data envelopment analysis a...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید