نتایج جستجو برای: زیرمدول قویاً اساسی

تعداد نتایج: 37506  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان 1388

زیرمدول k ازm را تماما پایا گوییم اگر برای هر ? عضو (m)endr، (k)? زیرمجموعه k باشد. از جمله زیر مدول های تماما پایا ، زیر مدول های تکین می باشند و هر زیر مدول تماما پایا از یک مدول تزریقی ، شبه- تزریقی می باشد. زیر مدول های تماما پایای حلقه r به عنوان r-مدول دقیقا ایدال های r می باشند. مدول m را قویا fi-توسیعی می نامند اگر هر زیر مدول تماما پایای m در یک جمعوند تماما پایا، اساسی باشد در این پای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یاسوج - دانشکده علوم 1391

چکیده در این پایان نامه می خواهیم بعضی از خواص زیر مدول های اوّل را روی جمع مستقیم و همچنین ارتباط زیر مدول های اوّل و نیم اوّل و قویاً اوّل با یکدیگر را بررسی کنیم و روی زیر مدول های رادیکال تمرکز کنیم. در واقع زیر مدول اوّل تعمیمی از ایدآل اوّل در حلقه است. می توان گفت اگر m یک r - مدول اوّل باشد آن گاه m نیم اوّل است ولی برعکس آن زمانی برقرار است که m یکنواخت باشد. بنابراین اگر m یک r - مدول یکنواخت...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1393

زیرمدول n از r-مدول راست m، زیرمدول بزرگ (اساسی) گفته می شود؛ یا به طور معادل m یک توسیع بزرگ (اساسی) n نامیده می شود، اگر برای هر زیرمدول ناصفر k از m داشته باشیم، n?k?0. مفهوم قویاً اساسی نیز چنین آمده: زیرمدول n ازr-مدول راست m را قویاً اساسی گوئیم و با نماد n ?se m نشان می دهیم، هرگاه یکی از شرایط معادل زیر برقرار باشد: 1) برای هر مجموعه ی اندیس گذار i، in?e ?im? 2) برای هر زیرمجموعه ی x?...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه هرمزگان - دانشکده علوم 1391

در این پایان نامه مدول های ارزیاب و شبه ارزیاب را روی یک قلمرو صحیح معرفی کرده و با مثالی نشان می دهیم هر مدول ارزیاب در حالت کلی شبه ارزیاب نیست در حالی که این ویژگی در حلقه ها برقرار است. در ادامه شرایط کافی برای برقراری این ویژگی را برای مدولها ارائه می کنیم. سپس زیرمدول های قویا تحویل ناپذیر را معرفی نموده و مدول هایی که زیرمدول قویا تحویل ناپذیر دارند را مشخص می کنیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس 1389

یک r-مدول راست m را قویا دیو می نامیم هرگاه برای هر زیرمدول n از m، tr(n,m)=n. شرایط معادل برای این که یک مدول قویا دیو باشد، بررسی شده است. اگر m کاهشی و قویا دیو باشد، آنگاه end(m ) یک حلقه منظم قوی است و عکس این مطلب اگر r یک حوزه صحیح ددکیند و m تابی باشد درست است. اگر حلقه r یک حوزه صحیح ددکیند باشد،آنگاه m قویا دیو است اگروتنهااگر m?r یا m یک مدول تابی و دیو باشد. روی حلقه های تعویضپذیر، ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه گیلان 1390

هنگاهی که در نظریه مدول ها یک مفهومی تعریف می شود، به طور طبیعی این سوال مطرح می شود که دوگان این مفهوم به چه صورتی است؟ آیا نتایج بدست آمده دوگانشان نیز برقرار است؟ هدف اصلی ما در این رساله، پاسخ به سوالات فوق در برخی از مفاهیم در نظریه مدول ها است. در فصل دوم از این رساله، مدول های ضربی را مورد مطالعه قرار خواهیم داد و در این رابطه نتایج جدیدی را بدست می آوریم (ر. ک. [12]، [13]، [20] ، [22] ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز 1389

این پایان نامه بر اساس مقاله ی ]11[ می باشد و در سه فصل تنظیم شده است. در این پایان نامه بررسی می کنیم که تحت چه شرایطی مدول هایی که در شرط dcc (acc) روی زیرمدول های غیر اساسی صدق می کنند یکنواخت یا آرتینی (نوتری) خواهند بود و ثابت می کنیم که هر مجموع مستقیم متناهی از مدول هایی که در شرط dcc (acc) روی زیرمدول های اساسی صدق می کنند نیز، در شرط dcc (acc) روی زیرمدول های اساسی خود صدق می کند، اما ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه محقق اردبیلی - دانشکده ریاضی 1392

در این پایان نامه به تعاریف زیرمدول اول، زیرمدول اول ضعیف، مدول ضربی، مدول ضربی ضعیف و قضایای اساسی مربوط به آن ها اشاره شده است. از جمله پاسخ به اینکه تحت چه شرایطی مدول ضربی ضعیف، مدول ضربی است و اینکه چه شرایطی لازم است تا زیرمدول اول ضعیف یک زیرمدول اول باشد و در فصل آخر به آشنایی مختصر در مورد مدول های آرتینی و بررسی زیرمدول های اول مدو لهای آرتینی پرداخته ایم.‎

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید چمران اهواز - دانشکده ریاضی و کامپیوتر 1392

برای زیرمدول nاز m،زیرمدول kازm را مکمل n گوییم، اگر k بااین خاصیت که با n اشتراک صفر دارد ماکسیمال باشد. زیرمدول kازm را مکمل گوییم،اگر مکمل یک زیرمدول از m باشد. مدول را cs-مدول گوییم، اگر هر زیرمدول مکمل آن جمع وند مستقیمش باشد. مدول را c??-مدول ضعیف گوییم، اگر هر زیرمدول نیم ساده از آن دارای مکملی باشد که جمع وند مستقیمش باشد. در این پایان نامه نشان داده شده که اگر مدول m یک c??-مدول ضعیف ب...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم ریاضی 1393

در سرتاسر این پایان نامه r یک حلقه جابجایی و یکدار و m یک r-مدول یکانی است. ابتدا مفاهیم زیرمدول اول و زیرمدول به طور قوی اول را تعریف می کنیم. نشان می دهیم زیرمدول های به طور قوی اول، بسیاری از ویژگی های اساسی ایده ال های اول را به ارث می برند. چند تعمیم از قضیه ایده ال اصلی در حلقه ها به مدول ها را ارائه می کنیم. سپس g-زیرمدول ها را معرفی کرده و ثابت می کنیم که هر زیرمدول اول از یک r-مدول متن...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید