نتایج جستجو برای: زبرحلپذیر
تعداد نتایج: 3 فیلتر نتایج به سال:
فرض کنیم g یک گروه متناهی باشد و m زیرگروه ماکسیمال آن باشد. در این صورت c را یک تکمیل برای m گوییم هرگاه c مشمول m نباشد ولی زیرگروه های g-پایا و واقعی c مشمول m باشد. زیرگروه c را تکمیل ماکسیمال گوییم هرگاه تکمیل دیگری برای m موجود نباشد که شامل c باشد. در این پایان نامه با ضعیف تکمیل ماکسیمال به s-تکمیل شرایط حلپذیری و زیرحلپذیری g را بررسی می کنیم.
زیرگروه h از گروه متناهی g، c-تکمیل نامیده می شود هرگاه زیرگروه k چنان موجود باشد که hk=g و مقطع h و k در مغز h در g قرار گیرد. هدف تعیین ساختار گروه g بر اساس زیرگروه مینیمال از زیرگروه فیتینگ تعمیم یافته g که c-تکمیل است می باشد. همچنین نتایج بدست آمده را به مبحث تشکل ها تعمیم داده ایم.
فرض کنید m زیرجبر ماکسیمال جبر لی دلخواه l باشد .زیرجبر c از l را یک تکمیل برای m می گویند هر گاه c مشمول در m مباشد اما هر زیرجبر محض c که ایده آلی از l است، مشمول در m باشد. مجموعه همه تکمیل های m را اندیس مختلط از m در l می گویند.از این مفهوم برای بررسی تاثیری که زیرجبرهای ماکسیمال در ساختار جبرهای لی دارند، استفاده می کنیم.بویژه مشخصه هایی برای جبرهای لی حلپذیر و زبرحلپذیر می یابیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید