نتایج جستجو برای: روش minres

تعداد نتایج: 369677  

Journal: :SIAM J. Scientific Computing 2011
Sou-Cheng T. Choi Christopher C. Paige Michael A. Saunders

CG, SYMMLQ, and MINRES are Krylóv subspace methods for solving symmetric systems of linear equations. When these methods are applied to an incompatible system (that is, a singular symmetric least-squares problem), CG could break down and SYMMLQ’s solution could explode, while MINRES would give a least-squares solution but not necessarily the minimum-length (pseudoinverse) solution. This underst...

2013
SOU-CHENG T. CHOI MICHAEL A. SAUNDERS M. A. Saunders

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-...

2013
SOU-CHENG T. CHOI MICHAEL A. SAUNDERS M. A. Saunders

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the unique minimum-length solution (also known as the pseudoinverse solution), which generally eludes MINRES. In all cases, it overcomes a potential instability in the original MINRES algorithm. A positive-...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه لرستان - دانشکده علوم پایه 1392

روش های مانده ای دسته ای از روش های تکراری می باشند که جهت حل سیستم های خطی با ماتریس ضرایب تنک و بزرگ بکار می روند. نوعی از این روش مشهور به روش gmres از اهمیت فراوانی برخوردار است. در این پایان نامه روش مانده ای جدیدی تحت عنوان minres-nk را بر روی دسته ای از دستگاه های معادلات خطی با ماتریس ضرایب نرمال وقتی که طیف ماتریس روی یک منحنی درجه k قرار دارد بیان نموده و آن را با روش gmres مقایسه می ...

Journal: :CoRR 2012
Sou-Cheng T. Choi Michael A. Saunders

We describe algorithm MINRES-QLP and its FORTRAN 90 implementation for solving symmetric or Hermitian linear systems or least-squares problems. If the system is singular, MINRES-QLP computes the minimum-length solution. In all cases, it circumvents a potential instability in the original MINRES algorithm. A positive-definite preconditioner may be supplied. Our FORTRAN 90 implementation illustra...

Journal: :SIAM J. Matrix Analysis Applications 2009
Fei Xue Howard C. Elman

Abstract. We present a detailed convergence analysis of preconditioned MINRES for approximately solving the linear systems that arise when Rayleigh Quotient Iteration is used to compute the lowest eigenpair of a symmetric positive definite matrix. We provide insight into the “slow start” of MINRES iteration in both a qualitative and quantitative way, and show that the convergence of MINRES main...

Journal: :SIAM Journal on Scientific Computing 2021

We introduce iterative methods named TriCG and TriMR for solving symmetric quasi-definite systems based on the orthogonal tridiagonalization process proposed by Saunders, Simon Yip in 1988. are tantamount to preconditioned Block-CG Block-MINRES with two right-hand sides which approximate solutions summed at each iteration, but require less storage work per iteration. evaluate performance of lin...

Journal: :SIAM J. Matrix Analysis Applications 2001
Elena Y. Bobrovnikova Stephen A. Vavasis

We consider the weighted least-squares (WLS) problem with a very ill-conditioned weight matrix. Weighted least-squares problems arise in many applications including linear programming, electrical networks, boundary value problems, and structures. Because of roundoo errors, standard iterative methods for solving a WLS problem with ill-conditioned weights may not give the correct answer. Indeed, ...

2007
REN-CANG LI R.-C. LI

The Conjugate Gradient method (CG), the Minimal Residual method (MINRES), or more generally, the Generalized Minimal Residual method (GMRES) are widely used to solve a linear system Ax = b. The choice of a method depends on A’s symmetry property and/or definiteness), and MINRES is really just a special case of GMRES. This paper establishes error bounds on and sometimes exact expressions for res...

1998
HUA DAI

In this paper, we investigate the block Lanczos algorithm for solving large sparse symmetric linear systems with multiple right-hand sides, and show how to incorporate deeation to drop converged linear systems using a natural convergence criterion, and present an adaptive block Lanczos algorithm. We propose also a block version of Paige and Saun-ders' MINRES method for iterative solution of sym...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید