نتایج جستجو برای: روش انقباضی lasso
تعداد نتایج: 374444 فیلتر نتایج به سال:
انتخاب متغیر، یکی از مراحل مهم در مدلسازی آماری است. برای این منظور، معمولاً از روشهایی نظیر حذف پسرو استفاده میشود. از آنجایی که در این روشها دو مرحله ی برآورد مدل و انتخاب متغیر به طور جداگانه صورت میگیرد، نتیجهی حاصل بیثبات خواهد بود. به همین دلیل اخیراً گروه دیگری از روشهای انتخاب متغیر به نام روشهای انقباضی مطرح شدهاند که در این بین، LASSO از محبوبیت ویژهای برخوردار است. در این تح...
سیستمهای BCI مبتنیبر SSVEP بهدلیل مزایایی چون سرعت انتقال اطلاعات بالا، نسبت بالای سیگنال به نویز و راحتی کاربران در استفاده از آنها، توجه بسیاری از محققان را به خود جلب کردهاند. هدف پردازشی در این سیستمها، شناسایی فرکانس ظاهرشده در سیگنال EEG کاربر است. از میان روشهای پردازشی مختلفی که برای شناسایی فرکانس در سیستمهای BCI مبتنیبر SSVEP استفاده میشوند، روش LASSO با استقبال فراوانی همر...
سیستم های bci مبتنی بر ssvep به دلیل مزایایی همچون نرخ انتقال اطلاعات بالا، نسبت سیگنال به نویز بالا و راحتی کاربران در استفاده از آن ها توجه بسیاری از محققان را به خود جلب کرده اند. هدف پردازشی در این سیستم ها، شناسایی فرکانس ظاهر شده در سیگنال eeg کاربر است. از میان روش های پردازشی مختلفی که برای شناسایی فرکانس در سیستم های bci مبتنی بر ssvep مورد استفاده قرار می گیرند، روش lasso با استقبال ف...
کارهای زیادی در انتخاب گروه های مهم متغیرها با استفاده از شیوه های تاوانی وجود دارد، در بررسی که انجام شد، ما نتایج را ازlasso به lasso گروهی با ابعاد بالا تعمیم می دهیم. ما انتخاب برآورد ویژگی های lasso گروهی و شیوه های lasso گروهی تطبیق پذیر را مطالعه می کنیم. نشان می دهیم که، تحت شرایط مناسب، lasso گروهی مدلی از نظم و ترتیب صحیح ابعاد را انتخاب می کند و تمایل مدل انتخابی به سطحی که با کمک ضر...
Background: Two main issues that challenge model building are number of Events Per Variable and multicollinearity among exploratory variables. Our aim is to review statistical methods that tackle these issues with emphasize on penalized Lasso regression model. The present study aimed to explain problems of traditional regressions due to small sample size and m...
This paper studies the intrinsic connection between a generalized LASSO and a basic LASSO formulation. The former is the extended version of the latter by introducing a regularization matrix to the coefficients. We show that when the regularization matrix is even- or under-determined with full rank conditions, the generalized LASSO can be transformed into the LASSO form via the Lagrangian frame...
background hospitals are the most costly operational and really important units of health system because they consume about 50%-89% of total health resources. therefore efficient use of resources could help in saving and reallocating the financial and physical resources. objectives the aim of this study was to obtain an overview of hospitals' performance status by applying different techniques,...
When the variable of model is large, the Lasso method and the Adaptive Lasso method can effectively select variables. This paper prediction the rural residents’ consumption expenditure in China, based on respectively using the Lasso method and the Adaptive Lasso method. The results showed that both can effectively and accurately choose the appropriate variable, but the Adaptive Lasso method is ...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید