نتایج جستجو برای: خیمنه ریمانی
تعداد نتایج: 243 فیلتر نتایج به سال:
در این پایان نامه به مطالعه خمینه های ریمانی ازنقص همگنی یک می پردازیم. (منظور از یک خمینه ریمانی از نقص همگنی یک، خمینه ریمانی است که تحت عمل یک گروه لی -g که g معمولا یک زیر گروه بسته ازگروه ایزومتری های -m است، دارای یک مدار ابر رویه باشد.) و چند شرط کافی بریا تمام ژئودزیک بودن یک مدار تکین ارائه می دهیم. در پایان به عنوان کاربرد، مساله رده بندی خمینه هایی که خمیدگی مثبت دارند و ...
در این مقاله، پس ارائه تاریخچه ای از عمل های با نقص همگنی یک، نتایج پژوهش های انجام شده در زمینه رده بندی عمل های با نقص همگنی یک بر خمینه های ریمانی و شبه ریمانی با تقریب هم ارزی مداری آورده شده است. همچنین مسئله های باز پژوهشی موجود در این زمینه معرفی شده اند.
این نوشته مطالعه ای اصولی از ساختارهای سایا با متر شبه ریمانی با تاکید بر شباهت و تفاوت های آن با متر ریمانی خواهد داشت . به خصوص مطالعه خواهد شد که هیچ خمینه شبه ریمانی سایا ی تخت از بعد بزرگتر از 5 وجود ندارد . .خمینه های ریمانی با خمیدگی با خمیدگی ثابت، خمینه های سه بعدی موضعا متقارن با خمیدگی برشی ثابت وخمینه های سه بعدی همگن لورنتزی سایا طبقه بندی خواهند شد . کلید واژه : خمینه ...
صرف نظر از جزئیات، منیفلدها به طور موضعی شبیه به یک فضای اقلیدسی هستند. در حالی که اربیفلدها با مدل شدن روی فضای مدارهای عمل یک گروه متناهی از دیفئومورفیسم های یک منیفلد همبند، منیفلدها را تعمیم می دهند. مفهوم اربیفلد، نخستین بار در دهه پنجاه میلادی توسط ساتاکه با نام v-منیفلدها معرفی شد. اما در حدود سال 1970 ترستن با این مفهوم را به عنوان ابزاری برای مطالعه توپولوژی منیفلدهای سه بعدی، به طور م...
دراین رساله برآنیم برخی از مفاهیم و قضایای اولیه را از فضای هیلبرت به مجموعه های ریمانی گسترش دهیم, از جمله به مطالعه ی مفاهیم مشتق دینی , پروکسیمال زیردیفرانسیل و توابع زیردیفرانسیل پذیر در مجموعه خمینه ریمانی می پردازیم. بعلاوه ویژگی ای را برای هر یک از توابع لیپشیتس و محدب تعریف شده روی خمینه های ریمانی بیان و شرایط بهینه سازی کامل برای ساختن مسایل بهینه بر حسب مشتق دینی اثبات می کنیم. و نیز...
در این پایان نامه گرادیان های تعمیم یافته یا زیر دیفرانسیل ها از توابع غیر مشتق پذیر، تعریف شده روی خمینه های ریمانی مورد بررسی قرار می گیرند و حساب زیر دیفرانسیل متناظر به زیر دیفرانسیل کلارک، بویژه قضیه مقدار میانی لی بورگ و قاعده زنجیری، اثبات می شوند. سپس مخروط های نرمال و مماس به زیر مجموعه های بسته از خمینه های ریمانی، معرفی می شوند و مشخصه سازی هایی از این مخروط ها ذکر می شوند. در ادامه ...
نظریه دگردیسی ابزاری برای بررسی ساختار فضای مدولای از طریق مطالعه دگردیسی های بی نهایت کوچک است و ارتباط نزدیکی با مساله رده بندی در بخشهای مختلف ریاضی از جمله هندسه جبری ، هندسه دیفرانسیل ، جبر و توپولوژی دارد. در این رساله ضمن معرفی مفاهیمی اساسی از هندسه ریمان ، ابزار لازم برای بررسی دگردیسی های ژئودزیکی و شرط وجود موضعی آنها با تقریب مرتبه اول فراهم شده است .
در این پایان نامه، کلاس جدیدی از جبر های لی به نام جبرهای لی شبه ریمانی و ریمانی معرفی می کنیم و نشان می دهیم که این دسته از جبرهای لی، حل پذیر هستند. ثابت می کنیم که یک ساختار پواسون خطی روی دوگان یک جبر لی دارای یک شبه متریک سازگار است اگر و تنها اگر آن جبر لی یک جبر لی شبه ریمانی باشد، همچنین جبر لی که با استفاده از خطی سازی در یک نقطه ی ثابت از یک منیفلد پواسون همراه با یک شبه متریک ساز...
فرض کنیم b و f دو منیفلد ریمانی با ابعاد مثبت و به ترتیب مجهز به متریک های ریمانی gb و gf باشند. تابع دیفرانسیل پذیر مثبت f روی b را در نظر می گیریم. منیفلد حاصلضرب b×f مجهز به متریک ریمانی g = gb+(f^2)gf را حاصل ضرب تاب دار b و f نامیم. منیفلد حاصلضرب(b × f, g) را با m = b ×f f نشان می دهیم. فرض کنید m1 ×? m2 حاصلضرب تاب دار از دو منیفلد ریمانی باشد و ?i : ni ?? mi برای i = 1, 2، غوطه وری ها...
در این پایان نامه به مطالعه خمینه های زیر ریمانی می پردازیم،این خمینه ها توسط متری به نام متر زیر ریمانی معرفی میشوند. متر زیر ریمانی همانند حالت ریمانی تعریف میشود با این تفاوت کهدو فرم هموار ومعین مثبت روی زیر کلاف مولد کروشه لز کلاف مماستعریف میشود.با استفاده ازاین متر طول خم و ژئودوزی های نرمال برای خم های طویل یا خم های افقیتعریف می شوند و سپس با استفاده از جواب معادلات همیلتون-ژاکوبی ژئود...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید