نتایج جستجو برای: خودریختی های نرمال

تعداد نتایج: 481376  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1391

فرض کنیمgیک گروه باشد.خودریختیrازgنرمال نامیده می شود هرگاه به ازای هر زیر گروه نرمالhازgداشته باشیمr(h)=h.در این پایان نامه مطالب ذیل مورد بررسی قرار می گیرد. 1-اگرgیک گروه پوچ توان فراآبلی(ناآبلی)آزاد باشد,آنگاه گروه خودریختی های نرمالgباگروه خودریختی های داخلی تعمیم یافته آن برابر تی باشند. 2-اگرgیک گروه پوچ توان(از ردهc)در آبلی باشد,آنگاه گروه خودریختی های نرمال آن پوچ توان (از رده حداکثر...

Journal: : 2023

ناخالصی ­های پلاسما یکی از عوامل اتلاف انرژی محصور شده در توکامک‌­ها به شمار می‌­روند که این منظر مطالعه و بررسی آن­ها راستای حفظ پایداری پلاسمای توکامک بهبود کیفیت محصورسازی امری ضروری خواهد بود. کار تحقیقاتی منظور ناخالصی‌­های دماوند، تکفام­‌ساز نوری موجود آزمایشگاه دماوند همراه یک آرایه خطی CCD ساختار طیف‌سنج نور مریی گرفته شد. سامانه طیف‌­سنج جدید توسط طول موج­‌های مشخصه لامپ جیوه کالیبره ر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود - دانشکده ریاضی 1392

فرض کنید ‎‎‎g‎‎‎ یک گروه باشد. گروه همه خودریختی های ‎‎g‎‎ را با aut(g)‎ نشان می دهیم. خودریختی ‎‎? از aut(g)‎ را یک خودریختی مرکزی گوییم در صورتی که برای هر‎ ، x ? g x^{-1}?(x) ? z(g) ‎. مجموعه ی همه خودریختی های مرکزی ‎‎ gکه آن را با ‎ autcent(g) نشان می دهیم یک زیرگروه نرمال aut(g)‎ است‎ .‎‎ ‎خودریختی ?‎ از aut(g)‎ را یک خودریختی حافظ رده تزویج گوییم در صورتی که برای هر ?(g) ? g^{g} ،g ? g ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ولی عصر (عج) - رفسنجان - دانشکده علوم ریاضی 1393

در این پایان نامه، ما ماتریس های دوار و بعضی از خواص آن را مورد بررسی قرار نشان circn(a) را با a روی مجموعه n n می دهیم. فضای ماتریس های دوار می دهیم و نرمال ساز و مرکز ساز آن را مشخص می کنیم. سپس حالت هایی را که ماتریس های دوار معکوس پذیر بوده بررسی نموده و خودریختی ها و خودریختی های کوچکترین حلقه شامل rϵ که در آن circn(rϵ) و circn(c) داخلی خطی روی است معرفی می کنیم. همچنین ضمن معرفی مفاه...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بیرجند - دانشکده علوم انسانی 1390

خودریختی ? از گروه g را مرکزی گوییم هرگاه ? با هر خودریختی داخلی از g جابجا شود. در این پایان نامه ابتدا خواص مقدماتی خودریختی های مرکزی ارائه می شود. از جمله اینکه خودریختی های مرکزی عناصر g را ثابت نگه می دارند و مجموعه تمام خودریختی های مرکزی زیرگروه نرمال گروه خودریختی های g است. سپس آن دسته از خودریختی های مرکزی که عناصر مرکز گروه را ثابت نگه می دارند، مورد بررسی قرار خواهند گرفت. همچنین د...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه الزهراء - دانشکده علوم پایه 1388

فرض کنیم g یک گروه باشد. گروه خودریختی های g را با (aut(g و گروه خودریختی های مرکزی g را با (autc(g نمایش می دهیم. خودریختی α از گروه g، یک خودریختی جابه جا شونده نامیده می شود هرگاه هرعضو گروه g با تصویرش تحت α جابه جا شود. مجموعه ی تمام خودریختی های جابه جا شونده را با a(g) نمایش می دهیم. در این پایان نامه خواهیم دید: 1) (a(g لزوماً یک زیرگروه از (aut(g نمی باشد. اما از ویژگی های جالبی برخور...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تبریز - دانشکده علوم ریاضی 1393

فرض کنیم ‎g‎ یک گروه‏، ‎n‎‏ و ‎m‏ ‎‎زیرگروه های نرمال آن باشند. در اینصورت مجموع? هم? خودریختی های g که اعضای g/n‎ نقطه به نقطه حفظ می کنند، یا به صورت معادل به ازای هر g?g و ??aut(g) ، g^(-1) ?(g)?n، زیرگروه خودریختی های g است و آن را با علامت aut^n (g) نمایش می دهیم‏. ‎ به همین ترتیب مجموع? هم? خودریختی های g که اعضای m‎ نقطه به نقطه حفظ می کنند، یا به صورت معادل به ازای هر m?m و ??aut(g ، ?(...

فرض کنید یک G گروه کامل باشد. در این مقاله با روش جدیدی ثابت می کنیم که هر خودریختی از گروه G را می توان به طور یکتا به یک خودریختی از گروه پوششی G گسترش داد. همچنین ثابت می کنیم اگر G یک فاکتور مرکزی از گروهی مثل H باشد آنگاه هر خودریختی از گروه G به طور یکتا به یک همریختی از گروه پوششی G به H گسترش پیدا می کند.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی شاهرود 1390

فرض کنید یک گروه باشد. مجموعه تمام خودریختی های را با نشان می دهیم. یک خودریختی را که با هر خودریختی داخلی جا به جا شود، خودریختی مرکزی می گوییم و مجموعه همه خودریختی های مرکزی را با نشان مـی دهیم که زیرگروهی نرمال از می-باشد. اگر و دو زیـرگــروه نـرمال باشـند مجموعه تمام خودریختی هایی که را نقطه به نقطه ثابت نگه می دارند را با نمایش می دهیم. به علاوه مجموعه تمام خـودریختی هـایی که را نقطه به...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1393

در این پایان نامه برخی از ویژگی های هندسی جفت سایای گسترش یافته ارائه می شود به بیان روشن تر ابتدا شرط های هندسی انتگرال پذیری جفت سایای گسترش یافته بیان می شود پس از آن با بهره بردن از این شرط ها، بینشی از برگ بندی مشخصه خمینه های سایای گسترش یافته در دسترس است. سرانجام نشان داده می شود، هر خمینه هموار مجهز به جفت سایای گسترش یافته با حاصلضربی از یک خمینه مختلط گسترش یافته و یک خمینه تقریباً دو...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید