نتایج جستجو برای: خودریختی حافظ رده
تعداد نتایج: 10338 فیلتر نتایج به سال:
چکیده مجموعه ی تمام خودریختی های حافظ رده از گروه g را با نماد نشان می دهیم. در این تحقیق تمام گروه های متناهی g که برای آن ها بیشترین مقدار خود را اختیار می کند، دسته بندی می کنیم. اگر g یک گروه نابدیهی از مرتبه ی باشد آن گاه ثابت می کنیم : (1) همچنین تمام گروه های متناهی g به قسمی که تساوی در رابطه ی (1) برقرار باشد را دسته بندی می کنیم. در واقع نشان می دهیم تساوی در رابطه ی (1) برقرار...
فرض کنید gیک p-گروه متناهی و |g|=pn باشد . به ازای هر x?g رده تزویج x را با xg نشان می دهیم و گروه خودریختی های gرا aut(g) در نظر می گیریم . خودریختی ? از گروه متناهی g را خودریختی حافظ رده می نامند هرگاه به ازای هر x?g ، ?(x)=x^g ، مجموعه تمام خودریختی های حافظ رده از گروه g را با autcp(g) نشان می دهند . اگر قرار دهیم outcp(g)=autcp(g)/inn(g) در این صورت این فاکتور گروه را مجموعه خودریختی های ...
فرض کنید g یک گروه باشد. گروه همه خودریختی های g را با aut(g) نشان می دهیم. خودریختی ? از aut(g) را یک خودریختی مرکزی گوییم در صورتی که برای هر ، x ? g x^{-1}?(x) ? z(g) . مجموعه ی همه خودریختی های مرکزی gکه آن را با autcent(g) نشان می دهیم یک زیرگروه نرمال aut(g) است . خودریختی ? از aut(g) را یک خودریختی حافظ رده تزویج گوییم در صورتی که برای هر ?(g) ? g^{g} ،g ? g ...
هدف این پایان نامه، معرفی و بررسی خوریختی های کدهای هندسه جبری و ارتباط آن با خودریختی های میدان توابع جبری است. از آنجا که از دید رسته ای میدان توابع جبری هم ارز با برخی ساختارهای جبری دیگر نظیر سطوح ریمان هستند، یافتن ارتباط بین این دو دسته خودریختی می تواند کمک زیادی در شناسایی خودریختی های کدها و در نتیجه رده ی بزرگی از کدها شامل کدهای دوری باشد. لذا در این پایان نامه پس از معرفی کد، میدان ...
خودریختی ? از گروه g را خودریختی رده ای پایا می نامیم، هرگاه برای هرg ?x، داشته باشیم xg?(x)?، که در آن xg رده مزدوجی x در g است. مجموعه تمام خودریختی های رده ای پایا g را با autc(g) نمایش می دهیم. در این پایان نامه، p-گروه های متناهی مانند g را که در آن ها |autc(g)| به بیشترین مقدار خود می رسد را بررسی می کنیم. برای این منظور ابتدا نشان می دهیم که برای هر p-گروه غیربدیهی g از مرتبه p^n رابطه ی...
فرض کنیم g یک گروه باشد. خودریختی a را یک خودریختی جابجا شونده گویند در صورتی که به ازای هر x از gداشته باشیم x a(x)=a(x) x. مجموعه ی خودریختی های جابجا شونده گروه g را با علامت a(g) نشان می دهیمa(g) . در برخی از گروهها تشکیل زیرگروه نمی دهد اما دارای خواص جالبی می باشد. در این رساله ابتدا به بررسی خواص a(g) می پردازیم و سپس ثابت می کنیم a(g) برای ac -گروه ه...
فرض کنید یک G گروه کامل باشد. در این مقاله با روش جدیدی ثابت می کنیم که هر خودریختی از گروه G را می توان به طور یکتا به یک خودریختی از گروه پوششی G گسترش داد. همچنین ثابت می کنیم اگر G یک فاکتور مرکزی از گروهی مثل H باشد آنگاه هر خودریختی از گروه G به طور یکتا به یک همریختی از گروه پوششی G به H گسترش پیدا می کند.
این رساله شامل چهار فصل است: فصل اول مطالب مقدماتی نظریه گروهها آورده شده است. فصل دوم را به خواص عمومی گروه خودریختی ها و گروه خودریختی های مرکزی گروهی مفروض اختصاص یافته است.فصل سوم ویژگیهایی از -p گروههای رده ماکسیمال را مشخص می کند. در فصل چهارم، ابتدا مرتبه گروه خودریختی های بسیاری از -p گروه ها را بررسی کرده و سپس چند حکم را بیان و اثبات می شود. فصل پنجم را با اثبات ادعاهای ذکر شد...
فرض کنیم g یک گروه و aut(g) گروه خودریختی های g باشد. گروه g را a(g) - گروه گوییم هرگاه مجموعه خودریختی های جابه جاشونده آن، a(g) ، زیرگروهی ازaut(g) باشد. آنچه برای ما جالب است بررسی خودریختی های جابه جاشونده یک گروه و پاسخ به این پرسش است که چه شرایطی در گروه g ایجاب می کند که g یک a(g) - گروه باشد؟. برای این منظور، رده های خاصی از p- گروهها، شامل p- گروههای فراخاص، ...
در این پایان نامه، خودریختی گروه ها را مورد بررسی قرار می دهیم. ابتدا نمایشی برای گروه خودریختی یک رده از گروه های فوق آبلی 2- مولدی ارائه می دهیم.سپس برخی از گروه های متناهی g را که p>q>2)|aut(g)|=2pq^2)معرفی می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید