نتایج جستجو برای: خمینه کیلری
تعداد نتایج: 295 فیلتر نتایج به سال:
موضوع این رساله که زیرهمسازی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و کیلری می باشد. شرح مقاله ای از گرین و وو در همین موضوع است که هدف نهایی آن اثبات دو قضیه راجع به زیرهمسازی توابع محدب ژئودزیک روی خمینه های ریمانی و چند زیرهمسازی توابع محدب ژئودزیک روی خمینه های کیلری است . شرح بیشتر این مطالب در متن رساله خواهد آمد.
در این پایان نامه فروبری های طولپایی تحلیلی حقیقی که همه جا می نیمال نیست مطالعه می شود. ثابت می شود یک استوانه بر پایه یک رویه کیلری است، یعنی و به صورت تجزیه می شود که نگاشت همانی است و یک رویه اقلیدسی کیلری حقیقی تمام است
در این پایان نامه نشان داده می شود که هر ساختار تقریباً هرمیتی سره برخمینه ی ?-بعدی واکر ایزوتروپیک کیلر است. هم چنین توصیفی موضعی از ساختارهای تقریباً کیلری سره که خوددوگان، *-اینشتین یا اینشتین هستند ارائه می شود و ثابت می شود که هر ساختار بطور اکید تقریباً کیلری اینشتین سره خوددوگان، ریچی تخت و *-ریچی تخت است. از این مطالب برای ارائه ی مثال هایی از ساختارهای تقریباً کیلری ناکیلری تخت و مث...
هدف اصلی در این پایان نامه بیان این مطلب است که یک خمینه انیشتین فشرده از بعد بزرگ تر یا مساوی چهار که دارای انحنای همسانگرد نامنفی است، باید موضعاً متقارن باشد. در ابتدا نشان داده می شود که یک خمینه انیشتین کیلری با انحنای همسانگرد نامنفی دارای انحنای مقطعی هولومورف ثابت است. سپس با تمرکز بر روی خمینه های چهارگانی- کیلری و با توجه به تجزیه r=r1+kr0 برای تانسور انحنای این خمینه ها، دو مطلب زیر ...
در این پایان نامه خواص التصاق های همورد تعریف شده در کلاف مماس تعمیم یافته از یک خمینه ی ریمانی و پایا نسبت به ساختار مختلط تعمیم یافته مورد بحث قرار می گیرد که توسط تبدیلات -b میدان تولید شده اند. این موضوع در مورد خمینه های کیلری با جزییات بیشتری بررسی خواهد شد. در پایان یک تعمیم از مفهوم ساختار آماری به هندسه ی تعمیم یافته معرفی می شود و مثالی در این زمینه ارائه می گردد
(به دلیل استفاده از نرم افزار فارسی تک فایل word باید با این برنامه باز شود) در این پایان نامه برخی از پیشرفتهای اخیر ریچی سولیتونها مرور میشود. در اغاز ریچی سولیتونها بر خمینه های ریمانی وکیلری تعریف میشود پس از ان با استفاده از قضیه کالابی کیلر - ریچی سولیتونهای قبضی بر خمینه های کیلری فشرده بیان میشود. با مطالعه تابعکهای پرلمن مشاهده میشود که نقاط بحرانی این تابعک ها ریچی سولیتونها هستند. ...
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
در این مقاله به دنبال قسمت اول آن که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.
ساختن یک دوری که نسبت به رده ای از نگاشتها ناوردا باشد، یکی از ابزارهای اساسی در رهیافت هندسی به ریاضیات است. ایدۀ آن به کلاین و حتی ریمان برمی گردد. در این مقاله دوریهایی را در نظر خواهیم گرفت که نسبت به نگاشتهای دوسو تمامریخت خمینه های مختلط، ناوردا باشند. دوریهای متعددی با این ویژگی وجود دارند. تعدادی از آنها از توابع روی فضای مماس ناشی می شوند به همان شیوه ای که متریک ریمانی روی یک خمینه، ی...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید