نتایج جستجو برای: خمینه کنموتسو

تعداد نتایج: 293  

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1391

چکیده: در این پایان نامه هدف مطالعه خمینه های کنموتسو با شرایط زیرمی باشد: r.r=lr q (g, r) , r.r=l q(s, r) , r.w=lw q (g, w) نشان می دهیم که هر خمینه نیم متقارن ، نیم متقارن ریچی ؛ هر خمینه شبه متقارن ، شبه متقارن ریچی ؛ هر خمینه نیم متقارن ریچی ، شبه متقارن ریچی؛همچنین هر خمینه نیم متقارن وایل ، شبه متقارن وایل است . ولی عکس این احکام درست نیستند . همچنین نتایج جالبی به صورت زیر به دست ...

پایان نامه :دانشگاه تربیت معلم - تبریز - دانشکده علوم پایه 1390

در این پایان نامه خمینه های کنموتسوی ?-ریچی متقارن را مطالعه می کنیم. هر خمینه کنموتسوی ?-متقارن، ?-ریچی متقارن است. نشان می دهیم یک خمینه کنموتسو ?-ریچی متقارن است اگر وتنها اگر انیشتینی باشد. در نهایت نشان می دهیم cr-ابر رویه های ?-متقارن فضا فرم کنموتسو دارای عملگر شکل d-موازی هستند. همچنین نشان می دهیم عملگر شکل cr-ابر رویه های فضا فرم کنموتسو با شرط c ? -1 d-موازی نیستند. بنابراین cr-ابر ر...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1392

در این پایان نامه خمینه های تقریبا کنموتسو،صادق در دو نوع خاص از شرایط پوچی را مورد بررسی قرار میدهیم که وابسته به دو تابع هموار ? و µ هستند.برای حالتی که 1-=? این شرایط همان شرایط ? پوچی خواهند بود که نشان میدهیم با تعریف ?-انیشتین معادل است. بنابراین فرض میکنیم 1- > ?. علاوه براین ، با ساختن مدل های موضعی به یک توصیف کامل از ساختار این نوع خمینه ها میپردازیم که خمینه های موردنظر بطور موضعی ای...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1391

در این پایان نامه خمینه های کنموتسوی ?-برگشتی را مطالعه می کنیم. ثابت می کنیم هر خمینه کنموتسوی ?-برگشتی، ‎-?انیشتنی است همچنین خمینه های کنموتسوی ‎3-بعدی موضعاً ‎?-برگشتی را بررسی کرده و مثالی از یک خمینه کنموتسوی 3-‎بعدی موضعاً ?-برگشتی را ارائه می دهیم.در نهایت نشان می دهیم که فضا-زمان کنموتسوی موضعاً ‎برگشتی، فضا-زمان رابرتسون-والکر می باشد

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1392

روی خمینه های فرد بعدی یک ساختار تعریف شده است که تعمیم یافته ی چندین ساختار شناخته شده روی خمینه های تقریبا مختلط مانند ساختارهای ساساکی‏، شبه-ساساکی‏، ترانس ساساکی‏، کنموتسو و شبه همتافته است. این ساختار‏، یک ساختار شبه ساساکی تعمیم یافته یا به طور مختصر ساختار g.q.s نامیده می شود‏، که روی خمینه های متریک تقریبا سایا تعریف شده و در چندین شرط اضافی نیز صدق می کند. سپس توزیع d_1در نظر گرفته شده...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه شهید مدنی آذربایجان - دانشکده علوم پایه 1392

در این پایان نامه به مطالعه ابر رویه های فضا فرم های ساساکی پرداخته و این ابر رویه ها را در شرایطی چون خمیدگی ثابت هولومرفیک ضعیف، عملگر شکلی برگشتی، ‎d‎-برگشتی، موضعا متقارن بودن و همچنین با عملگر ژاکوبی تعویض پذیر روی میدان برداری مشخصه را مورد مطالعه و بررسی قرار می دهیم. بعلاوه ابررویه هایی با شرط خمیدگی هولومرفیک ضعیف ثابت را در فضای مختلط تصویری بررسی می کنیم. همچنین ابررویه های فضای کنمو...

ژورنال: :فرهنگ و اندیشه ریاضی 2012
حامد فرهادپور

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

ژورنال: :فرهنگ و اندیشه ریاضی 0
حامد فرهادپور پژوهشگاه دانشهای بنیادی، پژوهشکده ریاضیات

در این مقاله به دنبال قسمت اول آن  که در شماره قبل به چاپ رسید، به بیان تاریخچه، کاربردها و چشم اندازهای نظریه زایبرگ-ویتن روی خمینه های سه و چهار بعدی می پردازیم. به ویژه تاکید بیشتری بر کارهای خیره کننده تاوبز در هندسه و توپولوژی خمینه های همتافته و سایا یعنی هم ارزی  ناوردای زایبرگ- ویتن و ناوردای گروموف روی خمینه های  همتافته و همچنین اثبات انگاره وینشتین توسط وی داریم.

ساختن یک دوری که نسبت به رده ای از نگاشتها ناوردا باشد، یکی از ابزارهای اساسی در رهیافت هندسی به ریاضیات است. ایدۀ آن به کلاین و حتی ریمان برمی گردد. در این مقاله دوریهایی را در نظر خواهیم گرفت که نسبت به نگاشتهای دوسو تمامریخت خمینه های مختلط، ناوردا باشند. دوریهای متعددی با این ویژگی وجود دارند. تعدادی از آنها از توابع روی فضای مماس ناشی می شوند به همان شیوه ای که متریک ریمانی روی یک خمینه، ی...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید