نتایج جستجو برای: جبر یکنواخت
تعداد نتایج: 8322 فیلتر نتایج به سال:
فرض کنیم ? و? در نگاشت پوشا بین جبرهای عملگری استاندارد ? و ? روی فضاهای باناخ ? و ? باشند که در شرط "??" ("?" (f)?(g) )="??" (fg) برای هر ? f,g? صدق می کنند (در اینجا (.) "??" نمایانگر طیف مرزی است). نشان داده می شود ? و? یا به صورت ?(t)=a_2 ta_1^(-1) و ?(t)=a_1 ta_2^(-1) ، ???، هستند که در آن a_1 و a_2 عملگرهای خطی کراندار دوسویی از ? به ? هستند یا به صورت ?(t)=b_2 t^* b_1^(-1) و ?(t)=b_1 t^*...
فرض کنیم x یک فضای فشرده و هاسدورف باشد.فرض کنیم a یک جبر یکنواخت روی x باشد به طور معادل a یک زیرجبر بسته از(c(x) است که شامل توابع ثابت است و نقاط x را جدا می کند . یک مساله مهم درباره این جبر مساله میانگین پذیر بودن آن است.مثالهای زیادی وجود دارند که یک جبر یکنواخت میانگین پذیر نیست در این پایان نامه به بررسی این مساله می پردازیم و شرایطی را بررسی می کنیم که تحت آن یک جبر یکنواخت میانگین پذی...
ک خانواده از توابع پیوسته روی فضای موضعاً فشرده و هاسدورف a فرض کنیم f 2 a است، هرگاه هر تابع a ی
فرض کنیم فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلط نیم x و y فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلطc (x ) باشد که به نرم یکنواخت مجهز شده است و t: a c (y) یک نگاشت خطی –حقیقی طولپای باشد. هدف ما در این پایان نامه مشخص کردن ساختار t تحت شرایط خاصی بر aو t(a) است. بالاخص، در حالتی که a یک فضای تابعی یکنواخت بر x است و t(a) یک زیر فضای خطی-حقیقی c(y) است که در خاصیت تفکیک...
در این پایان نامه ابتدا شکل کلی نگاشت های پوشای به طور ضعیف ضربی مرزی روی جبرهای لیپشیتس مشخص می شود. در ادامه نشان داده می شود اگر a و b جبرهای یکنواختی به ترتیب روی فضاهای هاسدورف فشرده x و y باشند و t یک نگاشت پوشا از a به b با نرمی با شرایط مشخص باشد در این صورت شکل کلی این نگاشت مشخص می شود و ثابت می گردد اگر این نگاشت یکال باشد آنگاه یک یکریختی جبری ایزومتری است. بعلاوه اگر t دارای شرایطی...
دراین پایان نامه برای گروه فشرده موضعی luc(g)،gرا فضای همه توابع پیوسته یکنواخت از چپ روی g درنظر گرفته شده است، همچنین خواص تصویری،تزریقی و تخت بودن(luc(gو فضای دوگان *(luc (gاز مدول های چپ باناخ روی جبر گروهی، و نیز جبر اندازه پذیراز g بررسی شده است.
فرض می کنیم t نگاشتی پوشا از جبر باناخ و جابه جایی نیم ساده واحددار a به روی جبر باناخ جابهجایی واحددار b باشد، که عضو واحد را حفظ می کند و برای هر ?(t(f)t(g))??(fg),g.f?a. در این صورت b نیم ساده است و tیکریختی است. شرط پوشایی t لازم است. به عنوان مثال نگاشتی غیرخطی و غیر ضربی t را از c*-جبر جابه جایی به توی خودش وجود دارد که عضو واحد را حفظ می کند و برای هر f و g در دامنه تعریفش، ?(tftg)=?(fg)...
فرض کنیم x و y فضاهای فشرده هاسدورف بوده و a و b به ترتیب جبرهای یکنواخت بر x و y باشند.هم چنین فرض کنیم از a به b یک عملگر پوشا باشد نشان می دهیم اگر در شرط ضربی-محیطی ;b((f)(g)) = ;a(fg); صدق کند که در آن؛ ;a(f) = f 2 a(f) : jj = maxfjwj : w 2 a(f)gg; آن گاه یک یکریختی جبری طولپای از a بروی b است. یکی از نتایج این حکم این است که هر یک یکریختی جبری ?? عملگر یکانی، پوشا و ضربی که بردهای م...
آیا شرایط خاصی وجود دارد که در آن همومورفیسم بودن یک نگاشت میان جبرهای توپولوژیکی، شرطی کافی برای پیوستگی آن باشد. این موضوع در جبرهای باناخ بررسی شده است که مشهورترین نتیجه بدست آمده قضیه جانسون درباره پیوستگی هر همورمورفیسم از یک جبر باناخ نیمه ساده می باشد. در اینجا سعی بر این است که این مساله را از این جهت تعمیم دهیم که جبرهای نرم دار، جای خود را به جبرهای توپولوژیکی آنها لزوما توسط یک نرم ...
فرض کنیم x و y فضاهای فشرده ی هاوسدورف باشند، a و b به ترتیب جبرهای یکنواخت بر x و y باشندa_{1} یک زیر مجموعه ی a باشد و ho : a_{1} ightarrow a ، au : a_{1} ightarrow a ، s : a_{1} ightarrow b و t : a_{1} ightarrow b نگاشت های باشند به طوری که$ ho(a_{1}) و a...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید