نتایج جستجو برای: جبر لیپشیتس
تعداد نتایج: 2256 فیلتر نتایج به سال:
در این پایان نامه با فرض این که (x,d)یک فضای متریک نافشرده است، ابتدا به معرفی جبرهای لیپشیتس lip(x,d^{alpha})، جبرهای کوچک لیپشیتس lip(x,d^{alpha}) و جبرهای برجست? لیپشیتس lip_{0}(x,d^{alpha}) برای 0<alpha leq 1 می پردازیم و برخی از خواص اساسی آن ها را بیان می کنیم. سپس برخی از قضایای مربوط به فضای متریک r-همبند را بیان می کنیم. در ادامه برخی از ویژگی های فضاهای توابع لیپشیت...
0
فرض می کنیمx یک فضای توپولوژیکی فشرده ی هاسدورف بوده و eیک جبر باناخ تعویض پذیر یکانی باشد.دراین پایان نامه ابتدا به معرفی جبر باناخ توابع بردار-مقداری پیوسته ی (c(x,e می پردازیم وفضای ایدآل ماکسیمال آنراتعیین می کنیم.سپس xیک مجموعه ی فشرده درn-فضای مختلط درنظر می گیریم وجبرباناخ توابع بردار-مقداری چندجمله ای (p(x,eرا مورد مطالعه قرار می دهیم وفضای ایدآل ماکسیمال آن را مشخص می کنیم .درادامه فرض...
دراین پایان نامه ابتداتبدیل گلفاندفشرده جبرهای باناخ تعویضپذیررامعرفی وبرخی ازخواص آن رابیان میکنیم.سپس یک شرط کافی برای فشردگی تبدیل گلفاند جبرهای تابعی باناخ بدست می آوریم.همچنین یک شرط لازم وکافی برای فشردگی تبدیل گلفاند یک جبر تابعی باناخ طبیعی ارائه میدهیم.درادامه،نشان میدهیم که ضرب تانسوری تصویری دوجبر باناخ باتبدیل گلفاندفشرده،یک جبرباناخ باتبدیل گلفاندفشرده است.بعلاوه،اگرضرب تانسوری تصو...
فرض کنیم فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلط نیم x و y فضاهای فشرده ی هاوسدرف باشند، aیک زیر فضای خطی-مختلطc (x ) باشد که به نرم یکنواخت مجهز شده است و t: a c (y) یک نگاشت خطی –حقیقی طولپای باشد. هدف ما در این پایان نامه مشخص کردن ساختار t تحت شرایط خاصی بر aو t(a) است. بالاخص، در حالتی که a یک فضای تابعی یکنواخت بر x است و t(a) یک زیر فضای خطی-حقیقی c(y) است که در خاصیت تفکیک...
در این رساله مفهوم جبر تابعی باناخ برداری مقدار را معرفی می کنیم. سپس فضای سرشت ها و صورت هر سرشت را در برخی از جبرهای تابعی باناخ بررسی می کنیم و نتایجی در زمینه اشتقاق های داخلی پیوسته و اشتقاق های نقطه ای و همچنین نتایجی کلی در مورد مرز شیلف و نقاط قله ای برخی از جبرهای تابعی باناخ جابه جایی ارائه می گردد. علاوه بر این توصیفی کامل از نگاشت های حافظ جدائی بین جبرهای لیپشیتس برداری مقدار ارا...
در این پایان نامه با فرض این که (x,d) یک فضای متری فشرده باشد، ابتدا به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip?(x,d) برای 1 < ? ?0 و جبرهای کوچک لیپشیتس lip?(x,d) برای 1 < ? < می پردازیم. سپس ایده آل های ماکسیمال این جبر ها را بررسی می کنیم. هم چنین وجود نگاشت های خطی، همریختی ها و مشتق های ناپیوسته بر lip?(x,d) را اثبات می کنیم. در ادامه با فرض این که (x,d) و(y,?) دو فضای متری فشرده...
فرض کنیم a(x) جبر یکنواخت متشکل از کلیه توابع مختلط مقدار پیوسته بر مجموعه فشرده x باشد که بر intx تحلیلی اند. برای هر 1 جبر لیپشیتس از مرتبه a را که با lip(x,a) نمایش داده می شود به صورت زیر تعریف می کنیم: حال تعریف می کنیم lipa(x,a)=lip(x,a) n a(x) و برای هر x تام و فشرده lipn(x,a) را جبر تمام توابع مختلط مقدار بر x می گیریم که مشتقات آنها تا مرتبه n ام بر x موجود و در (x,a)lip قرار دارند. ج...
در این پایان نامه با فرض این که (x,d)یک فضای متری فشرده باشد، به معرفی و بیان برخی از ویژگی های جبرهای لیپشیتس lip(x, ?) برای 0<??1 و جبرهای کوچک لیپشیتس lip(x, ?) برای 0<?<1 پرداخته و همین طور برای دنباله ی وزنی {m_n } ?(?@n=0) m=به معرفی جبرهای لیپشیتس توابع بینهایت بار مشتق پذیر lip(x, m, ?) برای 0<??1 و lip(x, m, ?) برای 0<?<1 می پردازیم. در ادامه درونریختی ها و درونریختی های فشرده ی جبرهای...
ض کنیم (d ,x) یک فضای متریک فشرده و ( ? . ? , e ) یک فضای باناخ باشد. در این پایان نامه ابتدا به معرفی فضاهای توابع لیپشیتس بردار - مقدار (e ,(d? ,x))lip برای [1 ,0) ? ? و (e ,(d? ,x))lip برای (1 ,0) ? ? میپردازیم. سپس با تعریف یک نرم مناسب بر این فضاها، نشان میدهیم که این فضاها، فضاهای باناخ هستند. در ادامه شرایط لازم وکافی برای کرانداری و فشردگی عملگرهای ترکیبی موزون بین فضاهای توابع لیپش...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید