نتایج جستجو برای: جبر توابع پیوسته
تعداد نتایج: 22409 فیلتر نتایج به سال:
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
یکی از مسائل مهم در نظریهً نقطهً ثابت تعیین فضاهای باناخی است که خاصیت نقطهً ثابت دارندیا ندارند.گوییم یک فضای باناخxخاصیت نقطهً ثابت دارد به ازای هر مجموعهً ناتهی محدب بستهً کراندار eدرxهرنگاشت غیر انبساطی tازeبهeنقاط ثابت ناتهی باشند. در این پایانامه بررسی می کنیم که یک جبر باناخ تعویض پذیر یکانی تحت شرایطی خاصیت نقطهً ثابت ندارد. به عنوان نتایجی از این بررسی ما در مورد جبر توابع پیوسته حقیقی -مقد...
دراین پایان نامه فشردگی و فشردگی ضعیف عملگرهای ترکیبی روی فضاهای تابعی معروف در انالیز تابعی بررسی می شود.و نشان می دهیم چنین عملگر هایی از الگوی کم وبیش مشابهی پیروی می کنند.
فرض کنید ?:x ?y نگاشت پیوسته ی پوشا بین فضاهای تیخونوف باشد. نگاشت ?، با عمل ترکیب یک همریختی یک به یک بین حلقه های توابع پیوسته حقیقی مقدار متناظر (c(x و (c(y، به صورت (c(y) ? c(x g ?go? القا می کند. به وسیله ی این همریختی (c(y را می توان به عنوان یک زیرحلقه از (c(x در نظر گرفت. در این پایان نامه ویژگی های متناهی توسیع حلقه (c(y) ?c(x را در رابطه با ویژگی های توپولوژیکی نگاشت ?:x ?y مو...
گفته می شود حلقه r خوش ترکیب است هر گاه هر عضو آن خوش ترکیب باشد، یعنی به توان هر عضو آن را به صورت مجموع یک عنصر وارون پذیر و یک عنصر خود توان نوشت. در این پایان نامه فرض بر آن است که a یک زیرحلقه یکدار، خوش ترکیب و چگال از اعداد حقیقی است که میدان نیست. ابتدا نشان می دهیم حلقه توابع پیوسته a-مقدار یا (c(x,a روی فضای صفر-بعدی x خوش ترکیب است اگر و تنها اگر x یک p-فضا باشد. سپس گفته خواهد شد ک...
هر نگاشت پیوسته ازx به s یک همریختی بین جبرهای توابع پیوسته ی حقیقی-مقدار القا می کند. هدف اصلی این پایان نامه بررسی ویژگی های پوشش متناهی بین فضاهای توپولوژیک است. برای این منظور به مطالعه ی خصوصیات جبری همریختی القایی بین جبرهای توابع پیوسته ی حقیقی-مقدار خواهیم پرداخت، نهایتا ثابت خواهیم کرد که نگاشت پیوسته ی x به s بین منیفلدهای توپولوژیک یک پوشش متناهی شاخه ای است، یعنی نگاشتی ب...
sz0-ایده آل ها بر حلقه چندجمله ای ها بی شک یکی از زیباترین پیوندهای جبر و توپولوژی در ساختار (c(x ظاهر می شود که متشکل است ازتمام توابع پیوسته حقیقی مقدار روی فضای توپولوژی x . این ساختار با دو عمل معمولی جمع و ضرب توابع ، تشکیل یک حلقه می دهد که به حلقه توابع پیوسته معروف است .در مبحث حلقه توابع پیوسته، هدف اصلی ، هدف اصلی ، بررسی ارتباط خواص توپولوژی x و خواص جبری (c(x است .
چکیده در این پایان نامه که مراجع اصلی آن [15] ، [18] و [25] است ابتدا به بررسی طولپاهای خطی-حقیقی بین جبرهای یکنواخت و همچنین طولپاهای خطی روی فضاهای c^((n)) [0,1] و lip[0,1] می پردازیم که c^((n)) [0,1]، فضای توابع n-بار مشتق پذیر با مشتق n-ام پیوسته روی [0,1] و lip[0,1]، فضای توابع پیوسته لیپ شیتس روی [0,1] است. فضاهای c^((n)) [0,1] و lip[0,1] را با نرم های خاصی در نظر می گیریم و در این حالت ...
چکیده ندارد.
در این پایان نامه به بررسی توابع پیوسته ی یکنواخت روی یک جبرباناخ دلخواه می پردازیم و شرایطی را که این توابع با دوگان جبر باناخ برابر است مطالعه می کنیم. همچنین توابع پیوسته ی یکنواخت روی یک گروه فشرده موضعی دلخواه را معرفی و به برخی از خواص آنها می پردازیم. در پایان یکریختی های طولپا بین این توابع را معرفی و ارتباط آنها را با یکریختی های توپولوژیکی گروه بیان می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید