نتایج جستجو برای: جبر تابعی باناخ

تعداد نتایج: 8411  

ژورنال: :علوم 0

فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.

پایان نامه :دانشگاه تربیت معلم - سبزوار - دانشکده ریاضی و کامپیوتر 1393

در این پایان نامه به بیان برخی مفاهیم مانند جبر، جبر باناخ و تعاریفی چون طیف ، شعاع طیفی ، جبر تابعی باناخ ، مرز سیلو ، مرز چاکوئت ، یرد و طیف پیرامونی می پردازیم. هدف این پایان نامه بررسی توان هایی از نگاشت های پوشای t ,t^:a ?b است که به ازای هر f ,g ?a در رابطه ?f^s g^t- ?? = ??(tf)?^s ?(t^ g)?^t- ?? صدق می کنند. نتیجه ای مشابه نیز در حالتی که t=t^ بین زیر مجموعه های خاص a , b تعریف می شود...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت معلم تهران - دانشکده علوم 1379

در این رساله مفهوم جبرهای (تابعی) یکنواخت حقیقی را تعمیم می دهیم و رده ی بزرگتری به نام جبرهای تابعی باناخ حقیقی را معرفی می کنیم. سپس نشان می دهیم که هر جبر تابعی باناخ مختلط را می توان با معرفی یک برگشت توپولوژیکی ‏‎t‎‏ به عنوان یک جبر تابعی باناخ حقیقی در نظر گرفت. لذا رده های جبرهای تابعی باناخ حقیقی بزرگتر از رده ی جبرهای تابعی باناخ مختلط است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه اراک - دانشکده علوم پایه 1391

دراین پایان نامه ابتداتبدیل گلفاندفشرده جبرهای باناخ تعویضپذیررامعرفی وبرخی ازخواص آن رابیان میکنیم.سپس یک شرط کافی برای فشردگی تبدیل گلفاند جبرهای تابعی باناخ بدست می آوریم.همچنین یک شرط لازم وکافی برای فشردگی تبدیل گلفاند یک جبر تابعی باناخ طبیعی ارائه میدهیم.درادامه،نشان میدهیم که ضرب تانسوری تصویری دوجبر باناخ باتبدیل گلفاندفشرده،یک جبرباناخ باتبدیل گلفاندفشرده است.بعلاوه،اگرضرب تانسوری تصو...

ژورنال: :caspian journal of mathematical sciences 0
a. taghavi department of mathematics, faculty of basic sciences, university of mazandaran, p. o. box 47416-1468, babolsar, iran. r. parvinianzadeh department of mathematics, faculty of basic sciences, yasouj university, p. o. box 75918-74831, yasouj, iran.

در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک  $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و  ρ:a→b  نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه  ρ همریختی جردن است

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه یزد - دانشکده ریاضی 1391

در این پایان نامه به بررسی نامساوی های تابعی جمعی در باناخ-مدول ها می پرذازیم. در فصل اول مفاهیم مورد نیاز از باناخ-مدول ها و *c-جبرها را آورده ایم. در فصل دوم پایداری معادلات تابعی ارائه شده است.در فصل سوم نامساوی های تابعی جمعی را در باناخ-مدول ها روی یک *c-جیراثبات می کنیم. به علاوه این نتایج برای رسیدگی به همریختی ها در جبرهای باناخ مختلط و اثبات پایداری هایرز اولام تعمیم یافته همریختی ها د...

پایان نامه :دانشگاه تربیت معلم - تهران - دانشکده علوم ریاضی و مهندسی کامپیوتر 1388

فرض کنیم a(x) جبر یکنواخت متشکل از کلیه توابع مختلط مقدار پیوسته بر مجموعه فشرده x باشد که بر intx تحلیلی اند. برای هر 1 جبر لیپشیتس از مرتبه a را که با lip(x,a) نمایش داده می شود به صورت زیر تعریف می کنیم: حال تعریف می کنیم lipa(x,a)=lip(x,a) n a(x) و برای هر x تام و فشرده lipn(x,a) را جبر تمام توابع مختلط مقدار بر x می گیریم که مشتقات آنها تا مرتبه n ام بر x موجود و در (x,a)lip قرار دارند. ج...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393

هدف در این پژوهش، ارائه یک رابطه جدید و کاربردهایی از آن است. در این پژوهش به ابر پایداری و پایداری هایرز‎ -اولام‎‎ -راسیاس‎ برای همریختی های سه تایی ژوردان و مشتق های سه تایی ژودان روی جبر های باناخ‎‎ سه تایی و ‎c*‎جبرهای سه تایی می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت معلم تهران 1367

چکیده ندارد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه بوعلی سینا - دانشکده علوم پایه 1390

دراین پایان نامه مفهوم ?- میانگین پذری یک جبر با ناخ ?aمورد مطالعه قرار می گیرد که ? یک همریختی از a به توی c است. چندین مشخصه از ?- میانگین پذری بیا ن و اثبا ت می شوند و نیز برخی از خواص ارثی ?- میانگین پذری مورد مطالعه قرار می گیرد فرض کنید a یک جبر باناخ و (? ? ?(a در این صورت (i (?(هسته ی ? ) یک واحد تقریبی راست کراندار دارد اگر وتنها اگر a -?میانگین پذیر باشد و a دارای واحد تقریبی راست ...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید