نتایج جستجو برای: جبر باناخ جابجایی
تعداد نتایج: 10170 فیلتر نتایج به سال:
در این پایان نامه، ابتدا تعاریف مهمی را که مورد استفاده می باشد آورده شد ه، سپس با توجه به تعریف جبر باناخ نشان داده شده که تمام هم ریختی های بین دو جبر باناخ پیوسته هستند. هم ریختی روی الحاقی دوم یک هم ریختی نیز مورد بررسی قرار گرفته شده است. پس از آن ضمن تعریف n – هم ریختی ارتباط آن را با هم ریختی بیان کرده ایم و نشان داده ایم که تحت شرایطی معین n – همریختی ها بر حسب همریختی ها بیان می گردند...
فرض کنید یک جبر باناخ باشد. ما نشان می دهیم که اگر یک ایده ال انقباض پذیر ازیک جبر باناخ باشد آنگاه برقرار است. سپس وجود یک خود توان می نیمال مرکزی را در یک جبر باناخ انقباض پذیرکه یک تابعک ضربی نا صفر روی آن موجود باشد ثابت می کنیم. همچنین مفهومb- انقباض پذیری و یکی از فرم های معادل آن را معرفی می کنیم و با مثالی نشان می دهیم که b- انقباض پذیری به طور اکید از انقباض پذیری ضعیف تر است.
در این مقاله نشان می دهیم که اگر a جبر باناخ یکدار و b یک $c^*$-جبر نامتناهی محض و دارای ایده آل ماکسیمال جابه جایی ناصفر و ρ:a→b نگاشت خطی پوشا یکدار و نگهدارنده طیف باشد آنگاه ρ همریختی جردن است
در این پایان نامه ابتدا تعمیمی از قضیه مازور-اولام برای طولپاهای بین زیرمجموعه های باز فضاهای متریک خاصی(شامل فضاهای نرمدار)بیان می شود. سپس ثابت می شود یک طولپا بین زیرگروه های باز گروه اعضای وارون پذیر جبرهای باناخ واحددارaوbبا یک انتقال به یک طولپای خطی حقیقی بینaوbگسترش می یابد.همچنین شرایطی برای جبرهای باناخ ارایه می شود که تحت آن گسترش خطی-حقیقی مذکور،مضربی از یک یکریختی جبری شود.به خصوص ...
چکیده: هدف کلی در این رساله این است که نشان دهیم نیم گروه های معکوس پذیرو جابجایی که تحت اعمال تعریف شده جبرهای باناخ تشکیل می دهند، میانگین پذیر ضعیف مدولی هستند. در ابتدا با تعریف ضرب های مدولی دوطرفه تعویض پذیر دو مدولی روی یک جبر باناخ تعریف کلی میانگین پذیری ضعیف مدولی را ارائه می دهیم که تعریف میانگین پذیری ضعیف مدولی در حالت جابجایی بودن جبر باناخ و در حالت غیر جابجایی جبر، متفاوت است. د...
در سال 1971،"گروئرت" و "ریمرت" ثابت کردند که یک جبر باناخ نوتری مختلط جابجایی، لزوما متناهی بعد است. به طور دقیق تر آنها ثابت کردند که یک جبر باناخ مختلط جابجایی، بعد متناهی روی c دارد هرگاه همه ایده آل های بسته در جبر، به طور جبری متناهی مولد باشند. در سال 1974،"سینکلیر" و "تولو" توانستند این مسئله را در حالت غیر جابجایی نیز ثابت کنند.. در 1978، "فریرا" و "توماسینی" ثابت کردند نتیجه گروئرت و ...
چکیده. فرض کنیم یک فضای متریک فشرده و یک زیرمجموعه ی فشرده ی ناتهی باشد. فرض کنیم و جبر باناخ همه ی توابع مختلط - مقدار پیوسته بر را نشان دهد که
در این پایان نامه دو موضوع اساسی مورد مطالعه و بررسی قرار می گیرد.1-رابطه بین قسمتهای گلیسون و همومورفیسم های ضعیف فشرده بین جبرهای یکنواخت.2-خواص اساسی از فضای ایده آل ماکسیمال یک جبر باناخ جابجایی با توپولوژی ضعیف به ویژه اگر a جبر باناخ جابجایی با فضای ایده آل ماکسیمال m(a) باشد .
فرض کنید a یک جبر باناخ باشد و (σ(x و (r(x به ازای هر xϵ a طیف و شعاع طیفی باشند ما روابط بین که در یکی از شرایط زیر صدق می کند.روابط بین a,b ϵ a که در شرایط زیر صدق می کند را بررسی خواهیم کرد. 1.(σ(ax)=σ(bx) (∀xϵa 2.r(ax)≤r(bx) ( ∀xϵa بویژه مشاهده خواهیم کرد که (1)نتیجه می دهد که اگر a یک c*-جبر باشد آنگاه a=b و (2) نتیجه می دهد که اگرa یک c*-جبر اول باشد آنگاه a ϵ cb. در نهایت به عنوان نت...
در این پایان نامه فشردگی اشتقاق ها روی جبرهای باناخ جابجایی را بررسی می کنیم، نشان می دهیم اگر هیچ اشتقاق فشرده ازجبر باناخ جابجایی aبتوی دوگان مدولش وجود نداشته باشد، آنگاه هیچ اشتقاق فشرده از جبر باناخ جابجایی aبتوی- aدو مدول متقارن وجود ندارد. همچنین نتایج مشابهی برای اشتقاق های ضعیف فشرده و اشتقاق های کران دار از رتبه متناهی اثبات می کنیم.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید