نتایج جستجو برای: جبرواره لی باناخ

تعداد نتایج: 2296  

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه علوم پایه دامغان - دانشکده ریاضی و کامپیوتر 1393

رسته ای(کتگوری) از کلاف های برداری باناخ متکی را در نظر می گیریم و در مورد مفهوم نیمه افشانه ها بحث می کنیم. بر اساس مجموعه برش هایی از یک کلاف برداری باناخ متکی، یک براکت لی با خواصش به مفهوم جبرواره لی می شود. ثابت می کنیم جبرواره های لی تشکیل یک رسته(کتگوری) می دهد. یک ساختار دیراک روی یک خمینه باناخ m به صورت یک زیر کلاف از کلاف مماس بزرگ tm?t*m تعریف می شود که نسبت به متر طبیعی استاندارد ...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم ریاضی 1391

در این پژوهش مسئله سازگاری بین یک همبندی غیر خطی وبعضی ساختارهای هندسی دیگر روی جبرواره های لی و امتداد آن روی تصویر کلاف برداری را مطالعه و بررسی می کنیم. نشان می دهیم همبندی غیر خطی استاندارد تولید شده با لاگرانژ منظم روی یک جبرواره لی یک همبند منحصربفرد است، و با ساختار سیمپلکتیک ( ساختار اتصالی ) محاسبه پذیر است.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه تربیت مدرس - دانشکده علوم ریاضی 1393

در این پایان نامه برخی از ویژگی های هندسی جفت سایای گسترش یافته ارائه می شود به بیان روشن تر ابتدا شرط های هندسی انتگرال پذیری جفت سایای گسترش یافته بیان می شود پس از آن با بهره بردن از این شرط ها، بینشی از برگ بندی مشخصه خمینه های سایای گسترش یافته در دسترس است. سرانجام نشان داده می شود، هر خمینه هموار مجهز به جفت سایای گسترش یافته با حاصلضربی از یک خمینه مختلط گسترش یافته و یک خمینه تقریباً دو...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه صنعتی اصفهان - دانشکده ریاضی 1392

در این پایان نامه به بررسی خصوصیات هندسی خمینه های گراسمان و استیفل، که در ارتباط با فضاهای تغییرات نوع اسلاتر در نظریه ی هارتری-فوک چند ذره ای و پیرامون آن بدست می آید خواهیم پرداخت .در حالت خاص، ثابت می کنیم که خمینه های گراسمان و استیفل، فضاهای همگن تحلیلی و زیر خمینه هایی از فضای عملگرهای کراندار روی فضای هیلبرت تک ذره ای می باشند و در خاتمه به عنوان یک نتیجه بیان می کنیم که آنها، خمینه های...

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1393

در این پژوهش به ابر پایداری و پایداری هایرز-اولام-راسیاس m-مشتق های لی سه تایی روی جبر های سه تایی لی و *-m-همریختی های ژوردان متعامد روی *c جبرهای باناخ و ابر پایداری و پایداری هایرز-اولام تعمیم یافته دو همریختی ها و دو مشتق های سه تایی ژودان روی جبرهای سه تایی لی می پردازیم.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی 1393

هدف اصلی در این پژوهش، ارائه یک رابطه جدید و کاربردهایی از آن است. در این پژوهش توسیع هایی حقیقی از قضیه نقطه ثابت باناخ را برای نگاشتهای انقباضی غیر خطی در فضاهای متریک دارای یک رابطه تعامد را بیان و اثبات نموده و کاربردهایی از آنها را در پایداری هایرز-اولام-راسیاس تابعی مطرح خواهیم کرد.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم پایه 1393

تقریباً در بسیاری از علوم، به ویژه مهندسی، این سوال اساسی مطرح می شود: تحت چه شرایطی یک شیء که به طور تقریبی در یک خاصیت مورد نظر صدق می کند، به شی ای که به طور دقیق در همان خاصیت صدق کند، نزدیک خواهد شد؟ در معادلات تابعی، می توان این سوال را چنین مطرح کنیم: در صورتی که جواب معادله ای به میزان خیلی کوچک با جواب دقیق معادله داده شده تفاوت داشته باشد، چگونه این جواب تقریبی به جواب دقیق معادله دا...

ژورنال: :علوم 0
داریوش بهمردی darius behmardi هیات علمی/ دانشگاه الزهرا فاطمه حیدری fatemeh heydari دانشجوی دکتری/ دانشگاه الزهرا فرید بهروزی farid behroozi هیات علمی/ دانشگاه الزهرا

مفهوم مدوری خیلی از مفهوم مشتق پذیری دور نیست. در بعضی مقالات رابطه بین مدوری و همواری بررسی شده است. در این مقاله رابطه ی جدیذ بین مدوری و خیلی همواری را توصیف خواهیم کرد.یک فضای باناخ را مدور است در صورتی که وسط هر دو نقطه متمایز واقع بر کره واحد فضای باناخ در داخل گوی باز واحد آن فضا باشد. یک فضای باناخ را هموار گوییم در صورتی که نرم آن در هرنقطه ناصفر فضا مشتق پذیر گاتو باشد و آنرا خیلی همو...

حامد اسماعیل زاده محمد صال مصلحیان,

شرح مختصر زندگانی و فعالیت های علمی استفان باناخ ریاضیدان لهستانی.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه سمنان - دانشکده ریاضی و کامپیوتر 1391

مبحث معادلات تابعی یک شاخه از ریاضیات است که پیدایش آن تقریباً به زمان تعریف تابع بر می گردد. در سال های 1747 و 1750، دالامبر سه مقاله چاپ کرد که آن ها آغاز کار روی معادلات تابعی بودند، اما اولین رشد معنی دار در به نظم در آوردن معادلات تابعی توسط مسئله ی قاعده متوازی الاضلاع نیروها ایجاد شد. ریاضیدان های مشهوری از جمله آبل، اویلر، پکسیدر، پواسون، دالامبر، فرشه، کوشی، کولموگوروف، گاوس و ینسن معاد...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید