نتایج جستجو برای: توابع پایه ی شعاعی
تعداد نتایج: 154161 فیلتر نتایج به سال:
در این پایان نامه، ابتدا توابع پایه ی شعاعی به اختصار معرفی می شود و برخی مزایا و معایب استفاده از این توابع بیان می گردد. در ادامه با معرفی مسائل مقدار ویژه ی ماتریسی و عملگری، به دنبال حل عددی این مسائل با استفاده از توابع پایه ی شعاعی می باشیم. به این منظور دو روش هم محلی سراسری و موضعی مبتنی بر توابع پایه ی شعاعی را مورد مطالعه قرار می دهیم. در حقیقت در این پایان نامه تلاش خواهیم کرد مزیت ه...
میدان ثقل جهانی معمولاً توسط توابع پایهی هارمونیک کروی تا درجه معینی از قدرت تفکیک طیفی و مکانی مدل میشود. توزیع غیریکنواخت و کیفیت متفاوت دادهها، این توابع را در مدلسازی محلی میدان ثقل محدود میکند. این توابع بیشتر ...
توابع پایه شعاعی (rbf) ابزار مفیدی برای حل عددی ، معادلات دیفرانسیل با مشتقات پاره ای می باشند، که هنگام حل عددی آن ها در مرز خطاهای بزرگی رخ می دهد بنابراین لازم است تا رفتار rbf ها در نزدیکی مرزها بررسی و بدنبال راهی برای بهبود دقت آن ها باشیم. در این پژوهش تقریب های توابع پایه شعاعی مورد بررسی قرار می گیرد این روش راهکاری برای بر طرف کردن کاهش دقت در نزدیکی مرزها برای مسایلی که دارای دامنه...
معادلات دیفرانسیل با مشتقات جزئی ابزاری مفید برای توصیف پدیده های فیزیکی و مسائل علوم و مهندسی می باشند . از آنجا که در اغلب موارد جواب دقیق به صورت یک سری نامتناهی موجود می باشد و یا به دست آوردن آن از هزینه بالایی برخوردار است ، روش های عددی برای حل این معادلات به کار می روند . از جمله این روش های عددی ، روش تفاضلات متناهی ، المان های متناهی و روش های طیفی می باشند که جواب مسأله را در نقاط...
در این رساله ابتدا روش هایی مبتنی بر تجزی? دامنه، برای حل عددی معادلات دیفرانسیل بر روی دامنه های بزرگ ارائه شده است. همچنین از آنجا که تعیین مناسب پارامتر شکل نقش مهمی در تأمین دقت مطلوب روش های مبتنی بر توابع پایه ای شعاعی ایفا می کند، الگوریتمی بر اساس بهینه سازی ژنتیک برای رسیدن به این مهم معرفی شده و مورد بررسی قرار گرفته است در بخشی از این رساله بر حل عددی معادلات دیفرانسیل با مشتقات ج...
این پایان نامه شامل 4 فصل می باشد:در فصل اول، تعاریف و مفاهیم پایه،معادلات انتگرال و معادلات دیفرانسیل و نیز توابع پایه ای شعاعی را تعریف کرده و مباحثی در مورد درونیابی با استفاده از این توابع را ذکر کرده ایم. در فصل دوم که به حل عددی معادلات انتگرال با استفاده از این توابع اشاره دارد، معادلات انتگرال ولترا و فردهلم نوع اول را با این توابع و همچنین مشتقات آنها حل کرده ودر زمینه بررسی افزایش نقا...
در این پایان نامه ابتدا به معرفی معادله کلاین - گورون پرداخته و در ادامه پس از بیان تعاریف و مفاهیم لازم درباره توابع پایه ای شعاعی به حل معادله کلاین گوردون با استفاده از اسپلاین صفحه نازک پرداخته شده است. در پایان پس از بیان تعاریف لازم در مورد توابع مقیاس و موجکها به حل معادله کلاین گوردون با استفاده از تابع مقیاس بی اسپلاین مکعبی می پردازیم.
حوزه ی جذب نقطه ی ثابت مجانبا پایدار از سیستم های دینامیکی گسسته را می توان با تعین مجموعه های زیر تراز تابع لیاپونوف بدست اورد.برای این منظور باید تابع لیاپونوف را برای سیستم پیدا کرد که ما این کار را با استفاده از توابع پایه شعاعی انجام داده ایم.
معادله شرودینگر غیرخطی مکعبی، معادله ی دیفرانسیل جزئی می باشد که در فیزیک مدرن نقش بسزایی دارد. به دلیل اهمیت زیاد جواب های معادله ی شرودینگر در توصیف چندین پدیده در فیزیک و مهندسی، حل این معادله ضرورت زیادی دارد. در این پایان نامه جهت حل عددی معادله ی شرودینگر غیرخطی مکعبی دو بُعدی، روشی عددی مبتنی بر روش هم محلی تابع پایه شعاعی به همراه عملگر الگوریتم نیوتن، ایجاد و بصورت موفقیت آمیزی استفاده...
در این رساله بر حل مسائل مکانیک محیط های پیوسته به کمک روش عددی المان مرزی تمرکز شده است. بدین منظور، روش المان مرزی برمبنای دو راهکار پیشنهادی جدید، یعنی استفاده از توابع پایه ی شعاعی مناسب در تخمین ترم غیرهمگن کننده معادلات دیفرانسیل، و نیز ارائه توابع شکل کارا برای تخمین متغیر حالات معادلات حاکم، فرمول بندی می شود. توابع پایه ی شعاعی پیشنهادی که شکلی به صورت exp(i?r) دارند، از مفهوم سری مختل...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید