نتایج جستجو برای: توابع احاطه گر رنگین کمانی
تعداد نتایج: 20873 فیلتر نتایج به سال:
تابع یک تابع احاطه گر 2-رنگین کمانی برای گراف نامیده میشود هرگاه برای هر راس با شرط داشته باشیم . وزن یک 2rdf برابر است با . عدد احاطه گر 2-رنگین کمانی گراف را که با نماد نمایش میدهیم کمترین وزن یک 2rdf در گراف است. تابع احاطهگر ماکسیمال 2-رنگین کمانی (m2rdf) برای گراف یک تابع احاطهگر 2-رنگین کمانی میباشد بهطوری که مجموعهی یک مجموعهی احاطهگر برای گراف نباشد. وزن یک m2rdf ...
مجموعه های احاطه گر موضوعی پرکاربرد و گسترده در نظریه ی گراف است که به صورت های گوناگونی تعمیم یافته است و امروزه در سطح وسیعی در دست مطالعه و بررسی است. یکی از انواع این تعمیم ها توابع احاطه گر رنگین کمانی است. تابع $f:v(g) ightarrow p({1, 2})$ را یک تابع احاطه گر 2-رنگین کمانی روی $g$ گویند هرگاه به ازای هر راس $vin v(g)$ با ویژگی $f(v)=emptyset$ تساوی $igcup_{uin n(...
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...
در این رساله رنگ آمیزی رنگین کمانی گرافها را مورد مطالعه قرار می دهیم. یک رنگ آمیزی رنگین کمانی از گراف g عبارت از تخصیص رنگ ها به راس های گراف g است به طوری که در همسایگی بسته ی هر راس g رنگها متمایز از هم باشند. به طور معادل یک رنگ آمیزی رنگین کمانی از گراف g یک رنگ آمیزی مجذور گراف g است و برعکس . با این رهیافت رنگ آمیزی رنگین کمانی تورها واستوانه ها و چنبره ها را مورد بررسی قرار می دهیم...
مفهوم عدد همبندی رنگین کمانی یکی از مفاهیم اساسی در نظریه ی گراف است که به علت کاربردهای زیاد آن در انتقال اطلاعات مورد توجه قرار گرفته است. یک رنگ آمیزی همبند رنگین کمانی از یک گراف g، یک رنگ آمیزی یالی نه لزوما معتبر از g است، به طوری که هر جفت از رئوس g توسط حداقل یک مسیر که یال های آن رنگ های متمایز از هم دارند به هم متصل اند و عدد همبندی رنگین کمانی g، کمترین تعداد رنگ مورد نیاز برای چنین...
احاط هگر ها، یکی از مباحثمهم در نظریه ی گراف ها، محسوب می شود. احاطه گر در نظریه ی گراف دارای کاربرد های فراوانی نظیر مسائل جانمایی در دنیای واقعی است. یکی از انواع احاط هگر ها، احاطه گر رنگین کمان است. f : v (g)
در رنگ آمیزی یال های گراف g یال های مجاور ممکن است دارای رنگ یکسان باشند. یک مسیر رنگین کمانی نامیده می شود هرگاه هیچ دو یالی از مسیر دارای رنگ یکسان نباشند. عدد همبندی رنگین کمانی که آن را با rc(g) نمایش می دهند، عبارتست از کوچکترین عدد صحیح i به طوری که یک - i رنگ آمیزی یالی از g وجود داشته باشد که هر دو راس غیرمجاور از g به وسیله یک مسیر رنگین کمانی به هم وصل شوند. همچنین عدد قویاً همبند ر...
مجوعه ی احاطه گر دوبدودر گراف ها اولین بار توسط هینس و اسلتر در سال 1998 به عنوان الگویی برای گرفتن پشتیبان وحفاظت از اهداف محرمانه ارائه شد. جان مک کوی ومیچل هنینگ درسال2009 دو مفهوم مکان یابی و مجموعه ی احاطه گر دوبدو را ترکیب کردند و سه تعریف جدید مجموعه های احاطه گر دوبدو مکان یابی ومجموعه های احاطه گر دوبدو مشتق پذیر و مجموعه های احاطه گر دوبدو متریک را ارائه کردند. در این پایان نامه، فصل...
در این پایان نامه احاطه گرهای سراسری و مستقل را معرفی کرده و سپس با استفاده از تحقیق در عملیات ، مساله برنامه ریزی خطی آن را بیان کرده ایم سپس چندجمله ای مربوط به هر یک را بدست آورده ایم و در نهایت ضرایب جندجمله ای را برای هر یک از آنها بدست آورده ایم.
فرض کنید یک گراف ساده با مجموعه رئوس مجموعه یالهای باشد. همسایگی باز رأس عبارت است از و همسایگی بسته آن برابر است با . فرض کنید یک تابع حقیقی مقدار بر باشد. در این صورت را وزن تابع می نامند. تابع را یک تابع احاطه گر (تام) علامت دار در نامند هرگاه به ازای هر ، ( ). مینیمم وزن در میان تمام توابع احاطه گر (تام) علامت دار را عدد احاطه ای (تام) علامت دار نامیده و با ( ) نشان می دهند. تابع احاطه گر (...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید