نتایج جستجو برای: بعد متریک کسری گراف
تعداد نتایج: 95327 فیلتر نتایج به سال:
در این پایان نامه به یکی از مسائل مهم نظریه گراف بنام بعد متریک پرداخته شده است. در فصل اول یک سری تعاریف مورد نیاز در طول نگارش پایان ناه مطرح شده است. در فصل دوم این پایان نامه ابتدا به بیان تاریخچه ای مختصر راجع به بعد متریک پرداخته شد و پس از آن بعد متریک در گراف ها تعریف شد. در زیربخش های دیگر این فصل بعد متریک چند خانواده از گراف ها نظیر گراف های کامل، دوبخشی کامل، گراف های درخت، مسیر، دو...
برای مجموعه مرتب شده $ w = lbrace w_{1}, w_{2},...,w_{k} brace $ از رئوس و رأس $ v $ در گراف همبند $ g $، نمایش $ v $ نسبت به $ w $، بردار $ k $-تایی egin{center} $ c_{w} = (d(v,w_{1}), d(v,w_{2}),.., d(v,w_{k}) ) $ end{center} است که $ d(x,y) $ نمایش فاصله بین دو رأس $ x,y $ است. مجموعه $ w $ جداکننده ای برای $ ...
بعد متریک گراف ها فرض کنید $g$ یک گراف همبند و $w={w_1,w_2,ldots,w_ k}$ زیرمجموعه ای مرتب از $v(g)$ باشد. برای هر رأس دلخواه $v$ از $g$ {fgi{g:mrep}} رأس $v$ نسبت به $w$ عبارت است از بردار $k$-تایی vspace*{4mm} $$r(v|w):=(d(v,w_1),d(v,w_2),ldots,d(v,w_k)).$$ اگر کدهای متریک رأس های متمایز $g$ نسبت به $w$ از هم متمایز باشند، $w$ یک مجموعه کاشف برای $g$ نامیده...
پارامترهای کسری محدوده ی گسترده ای از پارامترها را مانند توان کسری، تطابق کسری، رنگ آمیزی کسری و ... را شامل می شوند که ما در این پایان نامه تنها به بررسی توان کسری گراف ها و شرح کوتاهی از رنگ آمیزی کسری گراف ها خواهیم پرداخت.
فرض کنید g گرافی ساده و همبند، و s={s_1,…s_k} زیرمجموعه ای ازv(g) باشد. برای هر رأس v از g کد متریک v نسبت به s عبارت است از بردار-kتایی r(v?s)?(d(v,s_1 ),…,d(v,s_k ) ). که در آن d(v,s_i )فاصله ی بین دو رأس v و s_i در گراف g است. اگر کدهای متریک رأس های متمایز g نسبت به s از هم متمایز باشند، s یک مجموعه کاشف برای gنامیده می شود. در بین مجموعه های کاشف، مجموعه های ب...
یک گراف فازی یک زوج از توابع g:(?,?)است که? یک زیر مجموعه فازی از یک مجموعه غیر تهی v و? یک رابطه فازی متقارن روی ? به این معنی که ?:v?[0,1]و?:v×v?[0,1] به طوری که?:(u,v)??(u)??(v) برای هر u,v?v که در ان علامت? به معنی min{?(u),?(v)}می باشد. گراف معنی از این گراف را با که یک زیر مجموعه از را نمایش می دهیم. در این پایان نامه جنبه های متریکی گراف های فازی را مورد بحث و بررسی قرار می دهیم.مفهوم گ...
در این پایان نامه پس از معرفی فضاهای متریک مجهز به گراف به بررسی شرایطی می پردازیم که تحت آن -انقباض ها و -انقباض های مجانبی دارای نقطه ثابت باشند. همچنین با توسیع قضیه ی نقطه ی ثابت نادلر برای نگاشت های چند مقداری، شرایطی را بررسی می کنیم که تحت آن ، نگاشت f : x ? cb(x) دارای نقطه ی ثابت باشد. در این جا (x,d) یک فضای متریک مجهز به گراف جهت دار و cb(x) کلاس تمام زیرمجموعه های بسته و ناتهی x می ...
در این پایان نامه، نتایجی از نظریه ی نقطه ی ثابت به کمک نظریه ی گراف را بررسی می کنیم. یعنی، ابتدا فضاهای متریک مجهز به یک گراف را چنان در نظر می گیریم که نگاشت های تعریف شده بر آنها با خاصیت های متفاوت دارای نقطه ی ثابت باشند. با الهام از انقباض های متریک، انقباض های گراف-متریک مورد مطالعه قرار خواهند گرفت. همچنین نشان می دهیم که بسیاری از نتایج نقطه ی ثابت در فضاهای متریک با ترتیب جزیی را م...
معادلات دیفرانسیل کسری کاربردهای بسیاری در فناوریهای جدید مانند توصیف پسبندگی یا کشش مواد پلاستیکی نانو و مدلهای اقتصادی و نظریه کنترل سیستمهای دینامیکی دارند. در معادلات دیفرانسیل اغلب از تکنیک های مشخصی مانند روش تکراری پیکارد برای حل معادله استفاده می کنند حال آنکه در حل معادلات دیفرانسیل کسری بهتر است از تکنیک های جدید برای حل این نوع معادلات استفاده نماییم. در این رساله با بکارگیری نظریه ن...
چکیده ندارد.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید