نتایج جستجو برای: بردعددی
تعداد نتایج: 11 فیلتر نتایج به سال:
یکی از تعمیم های مهم بردعددی استاندارد، $c$- بردعددی می باشد که بر خلاف بردعددی، همواره محدب نیست. در صورتی که $c$ بردار $(1,0, cdots,0)$ باشد، $c$- بردعددی همان بردعددی استاندارد خواهد بود و اگر $ c in mathbb{r}^{n} $، $c$- بردعددی هر ماتریس مجموعه ای محدب می باشد. به طور طبیعی به نظر می رسد برای $ c in mathbb{r}^{n} $، شکل های محدبی از صفحه مختلط که $...
مطالعه عملگرهای کراندار یکی از موضوعات مهم در بحث نظریه عملگرها می باشد. ساده ترین نمونه ماتریس ها هستند که در تمام گرایش های ریاضی وجود دارند. ماتریس ها در ریاضیات معرفی شدند و تا امروز ویژگی های آنها بررسی می شود زیرا آنها نقش مهمی در ریاضی و کاربردهای آن بازی می کنند. این پایان نامه به مفهوم مهمی دررابطه با عملگرها به نام بردعددی، و به طور خاص بردعددی ماتریس ها اشاره می کند.مشابه مفهوم طیف، ...
در این پایان نامه به بررسی برد عددی عملگرهای مثبت روی فضای مشبکه هیلبرت خواهیم پرداخت. برای ماتریس های نامنفی $a$ و هر عدد مختلط $xi$ متلعق به گوی یکه، رابطه $$xi w(a) in w(a) longleftrightarrow xi w(a)=w(a), $$ که در آن $w(a)$ و $w(a)$ به ترتیب برد عددی و شعاع عددی ماتریس نامنفی $a$ می باشند، بررسی شده اند؛ در این پژوهش رابطه فوق را برای عملگرهای مثبت روی فضای مشب...
مطالعه عملگرهای کرانداریکی ازموضوعات مهم دربحث نظریه گروهها است ساده ترین نمونه ماتریسها هستند که درتمام گرایش های ریاضی وجوددارند ماتریسها درریاضیات معرفی شدندوتاامروزویژگی های آنها بررسی می شودزیراآنهانقش مهمی درریاضی وکاربردهای آن بازی می کنند هدف اصلی پایان نامه مطالعه برد عددی عملگرهای خطی کراندارروی فضای هیلبرت وآشنایی با مسایل مطرح شده دراین زمینه را دارد
در این پایان نامه، برخی از خواص برد عددی عملگرهای درجه دوم و همچنین بردعددی تعمیم یافته ی عملگرهای درجه دوم را بیان می کنیم و سپس در مورد اشکال به وجود آمده توسط آن ها به بحث می پردازیم. اخیراٌ تسو و وو نشان دادند که برد عددی عملگرهای درجه دوم به شکل بیضی است. در ای پایان نامه قصد داریم علاوه بر بیان نتیجه ی تسو-وو ثابت کنیم که برد عددی اساسی عملگرهای درجه دوم نیز به شکل بیضی است. سپس در مورد تع...
طبق قضیه پرون-فروبنیوس، اگر یک ماتریس (مربعی و مولفه به مولفه) نامنفی باشد آنگاه شعاع طیفی آن یک مقدار ویژه از است و بردار ویژه متناظرش نامنفی است. اگر بعلاوه، تحویل ناپذیر باشد آنگاه یک مقدار ویژه ساده است و بردار ویژه متناظرش مثبت است. همچنین برای یک ماتریس نامنفی تحویل ناپذیر با اندیس غیر اولیه (یعنی دقیقأ مقدار ویژه با قدر مطلق داشته باشد)، فروبنیوس یک قضیه ساختاری عمیق تری را ثابت کرده است...
چکیده: ماتریس? را پوچ توان می نامیم هرگاه به ازای عددطبیعی مانند n داشته باشیم . به ازای هر ماتریس ? روی فضای هیلبرت ، شعاع عددی و برد عددی را به ترتیب صورت a^n=0 w(a)= max{ |?|:??w(a)} و w(a)={:x?h ,|(|x|)|=1} تعریف می کنیم. یک ماتریس پوچ توان3×3 دارای بردعددی دایره ای است اگرو فقط اگر محاسبه می شود.w(a)=?(tr(a^* a))/2 شعاع عددی آن با فرمول و ?tr(a^* a)?^2=0 یک ماتریس پوچ توان...
مشخص کردن آن دسته از فضاهای باناخ که شاخص عددی آن ها برابر یک است، از جمله سوالات باز با قدمت طولانی در زمینه بردعددی باوئر می باشد. در این پایان نامه به مطالعه یک مشخصه سازی از فضاهای باناخ می پردازیم که دارای خاصیت رادون-نیکودیم بوده و شاخص عددی آن ها برابر با یک باشد. همچنین شرایطی از یک فضای باناخ مورد بررسی قرار می گیرد که، یکسان بودن عملگرهای نرمال گون و رادیال را تضمین کند.
در ابتدا مفاهیمی چون برد عددی، شعاع عددی و ... بیان می کنیم. فرض می کنیمh فضای هیلبرت و h(h)فضای خطی حقیقی اپراتورهای خودالحاق کراندار روی hباشد. ما به مطالعه چگونگی حفظ وارون پذیری، معین مثبت بودن،بردعددی و... نگاشت h(h)? :h(h) ? می پردازیم. هم چنین نشان می دهیم متناظر با فرض پوشایی یا یک به یکی? برای عنصر وارون پذیر یا عنصر یکانی t و ??{1,-1} فرمی به صورت x??txt? یا t? x??t x ^t دارد.ب...
چکیده:دراین پایان نامه ،ابتدابه مطالعه وبررسی برخی ازنامساوی هابرای عملگرهای خطی کران دارنرمال والحاقی های آن ها درفضای هیلبرت مختلط بااستفاده ازروش های کلاسیک ونوین منسوب به افرادی مانند:بوزانو،دراگمیر،هیل،دانکل-ویلیامز،گلدشتاین ودیگرنویسندگان می پردازیم.همچنین برخی خواص مربوط به بردعددی عملگرهای نرمال مانندشعاع عددی وشعاع طیفی رابیان کرده ونکاتی رادرموردآن هاذکرمی کنیم.یکی ازاساسی ترین وکاربر...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید