نتایج جستجو برای: انرژی لاپلاسین بدون علامت
تعداد نتایج: 93317 فیلتر نتایج به سال:
انرژی و انرژی لاپلاسین (بدون علامت) کمیت هایی هستند که به ترتیب برحسب مقادیر ویژه و مقادیر ویژه لاپلاسین )بدون علامت ( تعریف می شوند. مقادیر ویژه و مقادیر ویژه لاپلاسین )بدون علامت) گراف g که همان مقادیر ویژه ماتریس مجاورت و ماتریس لاپلاسین (بدون علامت) هستند، اهمیت زیادی در مطالعه ویژگی های گراف دارند. در این پایان نامه سعی بر این است که برخی از کران های انرژی لاپلاسین و لاپلاسین بدون علامت ...
انرژی یک ماتریس برابر با مجموع مقادیر تکین آن ماتریس تعریف می شود. انرژی یک گراف برابر است با مجموع مقادیر ویژه آن گراف، $e(g)=sum^{n}_{j=1}vert lambda_{j}vert$. در این پایان نامه ارتباط میان انرژی یک گراف و انرژی گراف یالی متناظر آن را با توجه به انرژی های لاپلاسین و لاپلاسین بدون علامت را بیان کرده و هم چنین تأثیرات ناشی از حذف یال را بر انرژی گراف بررسی می کنیم....
فرض کنید g گرافی n رأسی باشد. مقادیر ویژ? لاپلاسین بدون علامت و لاپلاسین g که به صورت نزولی مرتب شده اند را به ترتیب با q_1 (g)???q_n (g)?0 و ?_1 (g)????_(n-1) (g)??_n (g)=0, نمایش می¬دهیم. حدسی در مورد مقادیر ویژ? لاپلاسین گراف¬ها بیان می کند که ?_1 (g)-?_(n-1) (g)?n-1 یا به طورمعادل ?_1 (g)+?_1 (¯g)?2n-1 که در آن ¯g گراف مکمل g است. در این رساله، این حدس را برای گراف¬های دوبخشی ثابت می¬کن...
انرژی یک گراف عبارت است از مجموع قدر مطلق مقادیر ویژه ماتریس مجاورت آن گراف. در این پایان نامه ما به چگونگی محاسبه انرژی انواع مختلف گراف ها می پردازیم. درادامه به معرفی انرژی ماتریس لاپلاسین یک گراف پرداخته و برای تعدادی از گراف ها آن را محاسبه می کنیم. در فصل بعد به بررسی محاسبه انرژی یک گراف بعد از حذف یک یا چند یال آن می پردازیم. درپایان کاربرد انرژی گراف ها را در علم شیمی مطرح می نم...
در این پژوهش تقویت باریکه لیزر تپی فمتوثانیه Ti:sapphire کننده بازتولیدی با آرایش هندسی Z براساس روش تپ چیرپ بررسی شده است. برای انتقال ورودی اولیه به داخل کاواک و استخراج از دو سلول پاکل استفاده زمان شکلگیری برحسب انرژی دمش مطالعه روند تحول مورد قرار گرفته مدت تولید بدون حضور 80 نانوثانیه فرایند 38 نرخ تکرار 10 هرتز طول موج مرکزی 800 نانومتر بیشینه 2 میلیژول بعد 17 رفت برگشت 15 میلی ژول 532...
در این پایان نامه نشان می دهیم که اگر g یک درخت شبه ستاره باشد توسط طیف ماتریس لاپلاسینش مشخص می شود.علاوه بر آن قضایایی در مورد درخت های شبه ستاره با طیف ماتریس مجاورت یکسان اثبات می کنیم و متعاقبا گراف هایی که با یک درخت شبه ستاره بر حسب ماتریس لاپلاسین بدون علامت هم طیف هستند شناسایی می شوند.
در این پایان نامه به مطالعه ی گراف های با تعداد کم مقدار ویژه ی متمایز، نسبت به سه ماتریس مجاورت، لاپلاسین و لاپلاسین فاقد علامت می پردازیم. مطالعه ی گراف ها با تعداد کم مقدار ویژه ی متمایز، نسبت به ماتریس مجاورت، اولین بار توسط دوب در سال 1970 مورد توجه قرار گرفت. اولین بررسی ها در مورد گراف های با تعداد کم مقدار ویژه ی متمایز، نسبت به ماتریس لاپلاسین، توسط ون دام و همرز در سال 1995 انجا م گرف...
گراف n رأسی g=(v,e) در نظر گرفته شده است، منظور از طیف لاپلاسین g، مجموعه ی مقادیرویژه ماتریس لاپلاسین l=d-a، می باشد که d و a به ترتیب ماتریس قطری و ماتریس مجاورت g را نشان می دهند. در این پایان نامه، به مطالعه ی درخت ها و طیف لاپلاسین آن ها می پردازیم و با دقتی بالاتر، کران بالای جدیدی برای مجموع k مقدارویژه ی بزرگ ماتریس لاپلاسین هر درخت n رأسی می یابیم. هم چنین در این پ...
فرض کنید gیک گراف همبند، غیرجهت دارساده باn رأس و mیال باشد. عددچرخه گراف g به صورت m-n+1 تعریف می شود. برای اعداد بدست آمده 1 یا 2، g را به ترتیب1- دور یا 2- دور می نامیم. شعاع طیفی گراف g به صورت بزرگترین مقدارویژه ی ماتریس مجاورت g تعریف می شود. در این رساله به بررسی نتایج شعاع طیفی لاپلاسین بی علامت یک گراف، هنگامی که عملیاتی مانند جابجایی یال ها ویا زیر تقسیم بندی یال ها در گراف به کاربسته...
امروزه نظریه گراف به عنوان یکی از شاخه های پرکاربرد ریاضیات و در واقع به عنوان پلی مستحکم میان ریاضیات محض و ریاضیات کاربردی شناخته می شود. به همین منظور دانشمندان و پژوهشگران نظریه گراف در کنار تلاش هایی که برای شناسایی پارامترهای گوناگون گراف ها صورت می دهند؛ همواره کاربرد این نتایج را در زمینه های گوناگون مانند فیزیک و شیمی، نظریه شبکه ها و ارتباطات؛ دنبال می کنند. از جمله موضوعاتی که در چند...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید