نتایج جستجو برای: اشتقاق لی و جردن
تعداد نتایج: 760632 فیلتر نتایج به سال:
این مطالعه به منظور بررسی اشتقاق های لی وجردن روی یک خانواده از جبرهای خاص صورت گرفته است. از اینرو به بررسی اینکه تحت چه شرایطی می توان یک اشتقاق لی را به صورت حاصلجمع یک اشتقاق جمعی و یک نگاشت مرکزمقدار که جابجاگرها را به صفر می نگارد تجزیه کردو در آخر مباحثی پیرامون اشتققاق های جردن و شرایطی که تحت آن هر اشتقاق جردن یک اشتقاق است رامورد بررسی قرار داده ایم.
فرض کنیدa و b دو جبر باناخ و(b)? فضای شاخص های روی b باشد. در این صورت با فرض (???( b ، حاصل ضرب a×b تحت ضرب (a,b)(c,d)=(ac+?(d)a+?(b)c,bd) ونرم l_1 یک جبر باناخ است که به آن ?-حاصل ضرب لائوی a و b می گوییم ومعمولاً آن را با a×_? b نمایش می دهیم. در این راستا خواص دو تصویری، دو تختی،n - میانگین پذیری ضعیف و شاخص میانگین پذیری داخلی a×_? b را مورد بررسی قرار می دهیم. همچنین خاصیت شاخص میانگین پذی...
در این پایان نامه به معرفی توسیع (?,?)-اشتقاق های ناکاجیما و برشار می پردازیم. روابط همولوژیکی بین مدول توسیع (?,?)-اشتقاق ناکاجیما و مدول (?,?)-اشتقاق را بررسی می کنیم. همچنین یکریختی مدول های (?,?)-اشتقاق های ناکاجیما و برشار و گسترش آن به جبرهای یکدار شده را به کمک ?-ضربگر ها مورد بررسی قرار می دهیم. انواع دیگری از این اشتقاق ها با نام های جردن و لی را معرفی کرده و مورد مطالعه قرار می دهیم. ...
یکی از مباحث مهم آنالیز مطالعه اشتقاق روی جبرهای مختلف است. از مباحثی که در این زمینه مورد بحث قرار گرفته اند بررسی شرایطی است که تحت آن ها الحاقی دوم یک اشتقاق می کنیم که تحت آن ها الحاقی سوم از یک دواشتقاق همچنان یک دواشتقاق باقی می ماند. به علاوه شرایطی را که الحاقی سوم یک دواشتقاق داخلی، داخلی باشد نیز مورد بررسی قرار گرفته است. از آنجائی که جبرهای مثلثی یکی از جبرهای شناخته شده در آنالی...
چکیده در این پایان نامه به مطالعه برخی از معادلات تابعی معین و سیستم های معادلات تابعی مربوط به اشتقاق های (تعمیم یافته) روی حلقه های نیم اول می پردازیم. به ویژه ثابت می کنیم که هر اشتقاق سه گانه ی جردن تعمیم یافته روی حلقه ی نیم اول 2-آزاد تاب یک اشتقاق تعمیم یافته هست. همچنین ثابت می کنیم که هر *- اشتقاق سه گانه ی جردن (تعمیم یافته) روی *- حلقه ی نیم اول 2-آزاد تاب یک*- اشتقاق جردن (تعمیم یا...
نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.
در این رساله به مطالعه اشتقاق های لی روی جبرهای عملگری و جبرهای مثلثی می پردازیم. شرایطی را بررسی می کنیم که تحت آن یک اشتقاق لی روی این جبرها به شکل استاندارد ظاهر شود به عبارت دیگر، بتوان آن را به صورت مجموع یک اشتقاق جمعی و یک نگاشت مرکز مقدار که جابجاگرها را به صفر می نگارد تجزیه کرد.
فرض کنیم ? یک جبر مثلثی باشد. نگاشت دوخطی ?:?×??? دو اشتقاق نامیده می شود اگر نسبت به هر دو مولفه اش اشتقاق باشد. در این پایان نامه، مفهوم دو اشتقاق اکستریمال را معرفی می کنیم، و ثابت می کنیم که تحت برخی شرایط یک دو اشتقاق از جبر مثلثی ? ، مجموع یک دو اشتقاق اکستریمال و یک دو اشتقاق داخلی است. بررسی خواهیم کرد که تحت چه شرایطی اشتقاق های جبرهای مثلثی داخلی اند. همچنین ثابت می کنیم که هر اشتقاق...
در سال 1955 سینگر و ورمر [32] اثبات کردند که : برد هر اشتقال کراندار بر یک جبر باناخ جابجایی در داخل رادیکال ژاکوبسون آن قرار می گیرد. که به قضیه سینگر-ورمر شهرت یافت. در سال 1988 توماس [34] قضیه سینگر-ورمر را با حذف شرط کراندار بودن هر اشتقاق، تعمیم داد که به حدس سینگر-ورمر شهرت دارد. در سال 1991 ماتیو و مورفی [23] نشان دادند که قضیه کلینیک -شیرکوف (قضیه 2-3-5) برای هر اشتقاق کراندار دلخواه...
در این پایان نامه نتایجی در مورد اشتقاق و تعمیم های آن روی c*- مدول های هیلبرت و فضاهای عملگری وابسته به آن داده می شود. سه مشخص سازی برای ابر اشتقاق ها برحسب عناصری که حاصلضربشان نقطه جداکننده یا فشرده یا صفر است, داده می شود. مشخص سازی دیگری برای ابر اشتقاق ها به کمک عناصر تصویر یک جبر فون نیومن نیز ارایه می شود. یک مشخص سازی از ابر اشتقاق های سه تایی روی جبرهای سه تایی ارایه شده و...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید