نتایج جستجو برای: احاطه کننده رومی
تعداد نتایج: 80973 فیلتر نتایج به سال:
فرض کنید k یک عدد صحیح مثبت و g یک گراف ساده با مجموعه رئوس v(g) باشد. تابع k-احاطه کننده رومی روی گراف g تابعی است مانند f?v(g)?{0,1,2} به طوریکه برای هر راس u ، f(u)=0 آنـگاه حـداقل k راس v_1,v_(2 ),…,v_(k ) وجـود دارنـد که با u مجـاورنـد و f(v_(i ) )=2 بـرای هـر i=1,….,k. وزن یک تابع k-احاطه کننده رومی برابر است با مقدار ?_(u?v(g))??f(u)? و کمترین وزنی که تابع k-احاطه کننده رومی در یک گراف م...
بنابراهمیت مفهوم احاطه کنندگی در تحقیقات امروزی در نظریه گراف و وجود تنوع بیش از هشتاد نوع در آن، انجام این پایان نامه هم ضروری است. در این پایان نامه، به مطالعه مسائل اکستریمال برای عدد احاطه کنندگی رومی روی کلاسهای مختلف از گرافهای n-رأسی و ویژگیهایی از عدد k-احاطه کنندگی رومی پرداخته و ضمن بیان کارهای انجام شده در این زمینه برای گرافهای همبند با n ? 9 رأس، اثبات می کنیم که ?r(g) ? 4n/5, و تع...
فرض کنید (g=(v,e گرافی با راس های v ویال های e باشد.یک تابع احاطه گری رومی روی گراف g تابعی به صورت {f:v(g)?{0,1,2است به طوری که برای هر راس u با f(u)=0، حداقل یک راس مانند (v?n(u وجود داشته باشد که f(v)=2 .وزن یک تابع احاطه گری رومی f برابر با (f(v)=? f(u است.عدد احاطه گری رومی گراف g که با r(g)? نشان داده می شود عبارتست از مینیمم وزن در میان وزن های توابع رومی ممکن روی گراف g. فرض کنید k یک ...
برای گراف دلخواه g ، تابع یک تابع 2- احاطه گری رنگین کمان ( یا به اختصار 2rdf ) برای گراف g نامیده می شود، هرگاه برای هر رأس به طوری که ، داشته باشیم . وزن یک تابع 2- احاطه گری رنگین کمانی ، با نمادگذاری ، به صورت ذیل تعریف شده است . کمترین وزن یک 2rdf گراف g از میان همه ی چنین توابعی، عدد 2- احاطه گری رنگین کمانی گراف g نامیده شده و با نشان داده می شود. در فصل نخست این پایانامه، تعاریف و قضی...
احاطه گری رومی اولین بار توسط استوارت و ریول و رزینگ در سال های 1999و2000 معرفی شد و مورد توجه ریاضی دانان زیادی قرار گرفت . عدد احاطه گری رومی کاربرد زیادی در علوم کامپیوتر دارد. در این پایان نامه در فصل اول پس از بیان تعاریف مقدماتی به تعریف احاطه گری رومی و برخی خواص ان پرداخته و سپس عدد احاطه گری رومی را با عدد احاطه گری مقایسه کرده ایم . در فصل دوم به ارائه ماکسیمم و مینیمم برای |v0| و|v1|...
مجموعه های احاطه گر موضوعی کاربردی و گسترده در نظریه ی گراف می باشد که به صورت های گوناگونی تعمیم یافته و مورد مطالعه قرار گرفته است. زیرمجموعه ی $s$ از $v(g)$ را یک مجموعه ی احاطه گر گویند هرگاه $n[s]=v(g)$. کمترین اندازه ممکن برای یک مجموعه ی احاطه گر را عدد احاطه ای گویند و با $gamma(g)$ نمایش می دهند. تابع $f:v(g) ightarrow {0,1, 2}$ را یک تابع احاطه گر رومی روی...
بازی احاطه ای بر روی گراف های ساده ی بدون جهت توسط دو بازیکن $mathcal d$ و $mathcal a$ انجام می شود. هر یک از این بازیکنان در نوبت بازی خود یک یال بدون جهت را انتخاب و آن را جهت گذاری می کنند. بازی را بازیکن $mathcal d$ شروع می کند و در جهت گذاری یال ها به دنبال کاهش عدد احاطه ای گراف جهت داری است که در انتهای بازی به دست خواهد آمد، در حالی که بازیکن $mathcal a$ به دنبال افزایش این عد...
بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص
احاطه کننده یکی از مفاهیم بنیادین در نظریه گراف است که دارای کاربردهای مختلف در شبکه های تک کاره و بی سیم، شبکه های بیولوژیکی، محاسبات توزیع شده، شبکه های اجتماعی و گراف های وب می باشد. مجموعه های احاطه کننده همچنین به عنوان مدل هایی برای تسهیلات مساله های موقعیت (تعیین محل) در پژوهش عملیاتی استفاده می شوند. از جمله کاربردهایی که برای این مفهوم می توان نام برد، استفاده از آن در شبکه های ارتباطی...
برخی از مسائل بهینه سازی در گراف ها وجود دارند که با استفاده از آن ها برخی پارامترهای گراف از جمله ماکسیمم عدد استقلال، ماکسیمم عدد تطابق یالی، مینیمم عدد پوشش رأسی و یالی و مینیمم عدد احاطه کننده ی رأسی، کلی و یالی به دست می آیند. فرض کنید g یک گراف ساده باشد. زیرمجموعه ی s از رئوس g را یک مجموعه ی احاطه کننده از گراف مذکور نامیم هرگاه هر رأسی از گراف که در s نباشد حداقل یک همسایه در s داشته ب...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید