نتایج جستجو برای: احاطه کننده رنگی
تعداد نتایج: 83464 فیلتر نتایج به سال:
ما ارتباط بین مسئل? افراز خوش? سالم و مسئل? احاطه کننده رنگی را مطالعه می کنیم.
بدست اوردن مجموعه های احاطع کننده های موضعی در گرافها وبدست اوردن مینیمم انمدازه ان در چند گراف خاص
احاطه کننده یکی از مفاهیم بنیادین در نظریه گراف است که دارای کاربردهای مختلف در شبکه های تک کاره و بی سیم، شبکه های بیولوژیکی، محاسبات توزیع شده، شبکه های اجتماعی و گراف های وب می باشد. مجموعه های احاطه کننده همچنین به عنوان مدل هایی برای تسهیلات مساله های موقعیت (تعیین محل) در پژوهش عملیاتی استفاده می شوند. از جمله کاربردهایی که برای این مفهوم می توان نام برد، استفاده از آن در شبکه های ارتباطی...
برخی از مسائل بهینه سازی در گراف ها وجود دارند که با استفاده از آن ها برخی پارامترهای گراف از جمله ماکسیمم عدد استقلال، ماکسیمم عدد تطابق یالی، مینیمم عدد پوشش رأسی و یالی و مینیمم عدد احاطه کننده ی رأسی، کلی و یالی به دست می آیند. فرض کنید g یک گراف ساده باشد. زیرمجموعه ی s از رئوس g را یک مجموعه ی احاطه کننده از گراف مذکور نامیم هرگاه هر رأسی از گراف که در s نباشد حداقل یک همسایه در s داشته ب...
در این پایانامه سعی می کنیم به ارتباط بین عدد رنگی و عدد رنگی پویای گراف ها در حالت خاص بپردازیم, علاوه بر آن عدد رنگی پویای انتخابی(لیستی) را معرفی کرده و بعضی از نتایج آن را بیان می کنیم.
امروزه نظریه گراف نسبت به زمان پیدایش خویش بسیار پیشتر رفته است به طوری که در دنیای واقعی کاربردی بودن آن برکسی پوشیده نیست؛ به خصوص عجین شدن آن با علم کامپیوتر باعث شده که این علم در زمره پرکاربردترین آن ها باشد. نقش گراف علاوه بر ریاضیات کاربردی و محض در بسیاری از علوم مانند فیزیک، شیمی، مهندسی، کامپیوتر، سیاست، اقتصاد و غیره بسیار پررنگ است. بیان کاربردهای بی شمار گراف ها...
فرض کنید k یک عدد صحیح مثبت و g یک گراف ساده با مجموعه رئوس v(g) باشد. تابع k-احاطه کننده رومی روی گراف g تابعی است مانند f?v(g)?{0,1,2} به طوریکه برای هر راس u ، f(u)=0 آنـگاه حـداقل k راس v_1,v_(2 ),…,v_(k ) وجـود دارنـد که با u مجـاورنـد و f(v_(i ) )=2 بـرای هـر i=1,….,k. وزن یک تابع k-احاطه کننده رومی برابر است با مقدار ?_(u?v(g))??f(u)? و کمترین وزنی که تابع k-احاطه کننده رومی در یک گراف م...
مجموعه s از رئوس گراف g را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s با حداقل یک رأس از s مجاور باشد. در گراف جهت دار d مجموعه s از رئوس را یک مجموعه احاطه گر نامند هرگاه هر رأس v ? v(g) – s در همسایگی خروجی حداقل یکی از رئوس s قرار داشته باشد. مینیمم تعداد اعضای یک مجموعه احاطه گر را عدد احاطه ای نامیده و با ?(g) نشان میدهند. مقدار عدد احاطه ای یک گراف و گراف جهت دار می تواند با اضافه...
در سنت تفکر متافیزیکی، اندیشیدن و معرفت حاصل صرف فعالیتهای منطقی و ذهنی بشر است و درستی نتیجه ناشی از کاربرد درست قوای ذهنی و اِعمال صحیح اصول، قواعد و روشهای مناسب شناخت، همچون اصول و قواعد منطق یا روشهای تجربی. در روزگار ما پرسشهایی چون «نظریه چیست؟» یا «تفکر چیست؟» یادآور رشتههای تخصصیای چون فلسفه علم یا معرفتشناسی است. در زمانه ما جریان های گوناگون فلسفی، به ویژه فلسفههای علم و پژوهش...
در فصل 1 به بیان و بررسی تعاریف ابتدایی گراف و همچنین بیان برخی اقدامات اولیه ریاضیدانان در زمینه استقلال در گراف می پردازیم، سپس مسأله ای کاربردی از مجموعه مستقل را بیان می کنیم. در فصل 2 مساله یافتن بیشترین تعداد مجموعه های مستقل ماکسیمم گراف $ g $ از مرتبه n را مورد مطالعه قرار می دهیم. این مساله را برای بخش های مختلف گراف، مانند گراف های عمومی، درخت ها، جنگل ها، گرا...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید