نتایج جستجو برای: $varphi$-amenability

تعداد نتایج: 1985  

Journal: :bulletin of the iranian mathematical society 2012
ali ghaffari ahmad alinejad

let $a$ be an arbitrary banach algebra and $varphi$ a homomorphism from $a$ onto $bbb c$. our first purpose in this paper is to give some equivalent conditions under which guarantees a $varphi$-mean of norm one. then we find some conditions under which there exists a $varphi$-mean in the weak$^*$ cluster of ${ain a; |a|=varphi(a)=1}$ in $a^{**}$.

Journal: :bulletin of the iranian mathematical society 0
a. ghaffari department of‎ ‎mathematics‎, ‎semnan university‎, ‎p.o‎. ‎box 35195-363‎, ‎semnan‎, ‎iran. s. javadi department of‎ ‎mathematics, ‎semnan university, ‎p.o‎. ‎box 35195-363‎, ‎semnan‎, ‎iran.

‎generalizing the notion of character amenability for banach‎ ‎algebras‎, ‎we study the concept of $varphi$-connes amenability of‎ ‎a dual banach algebra $mathcal{a}$ with predual $mathcal{a}_*$‎, ‎where $varphi$ is a homomorphism from $mathcal{a}$ onto $bbb c$‎ ‎that lies in $mathcal{a}_*$‎. ‎several characterizations of‎ ‎$varphi$-connes amenability are given‎. ‎we also prove that the‎ ‎follo...

In this paper we introduce the notion of $varphi$-commutativity for a Banach algebra $A$, where $varphi$ is a continuous homomorphism on $A$ and study the concept of $varphi$-weak amenability for $varphi$-commutative Banach algebras. We give an example to show that the class of $varphi$-weakly amenable Banach algebras is larger than that of weakly amenable commutative Banach algebras. We charac...

‎Generalizing the notion of character amenability for Banach‎ ‎algebras‎, ‎we study the concept of $varphi$-Connes amenability of‎ ‎a dual Banach algebra $mathcal{A}$ with predual $mathcal{A}_*$‎, ‎where $varphi$ is a homomorphism from $mathcal{A}$ onto $Bbb C$‎ ‎that lies in $mathcal{A}_*$‎. ‎Several characterizations of‎ ‎$varphi$-Connes amenability are given‎. ‎We also prove that the‎ ‎follo...

In the present paper for two $mathfrak{A}$-module Banach algebras $A$ and $B$, we investigate relations between $varphi$-$mathfrak{A}$-module approximate amenability of $A$, $psi$-$mathfrak{A}$-module approximate amenability of $B$, and $varphioplus psi$-$mathfrak{A}$-module approximate amenability of $Aoplus B$ ($l^1$-direct sum of $A$ and $B$), where $varphiin$ Hom$_{mathfrak{A}}(A)$ and $psi...

The bounded approximate version of $varphi$-amenability and character amenability are introduced and studied. These new notions are characterized in several different ways, and some hereditary properties of them are established. The general theory for these concepts is also developed. Moreover, some examples are given to show that these notions are different from the others. Finally, bounded ap...

Journal: :Collectanea Mathematica 2021

In this paper, we introduce a weak form of amenability on topological semigroups that call $$\varphi $$ -amenability, where is character semigroup. Some basic properties new notion are obtained and by giving some examples, show definition weaker than the semigroups. As noticeable result, for semigroup S, it shown if S -amenable, then amenable. Moreover, -ergodicity introduced proved under condi...

Let $A$ be an arbitrary Banach algebra and $varphi$ a homomorphism from $A$ onto $Bbb C$. Our first purpose in this paper is to give some equivalent conditions under which guarantees a $varphi$-mean of norm one. Then we find some conditions under which there exists a $varphi$-mean in the weak$^*$ cluster of ${ain A; |a|=varphi(a)=1}$ in $A^{**}$.

In this paper we define $varphi$-Connes module amenability of a dual Banach algebra $mathcal{A}$ where $varphi$ is a bounded $w_{k^*}$-module homomorphism from $mathcal{A}$ to $mathcal{A}$. We are mainly concerned with the study of $varphi$-module normal virtual diagonals. We show that if $S$ is a weakly cancellative inverse semigroup with subsemigroup $E$ of idemp...

Journal: :CoRR 2017
Alexandre Bali

For a monochrome layer $x$ of opacity $0\le o_x\le1 $ placed on another monochrome layer of opacity 1, the result given by the standard formula is $$\small\Pi\left({\bf C}_\varphi\right)=1+\sum_{n=1}^2\left(2-n-(-1)^no_{\chi(\varphi+1)}\right)\left(\chi(n+\varphi-1)-o_{\chi(n+\varphi-1)}\right),$$ the formula being of course explained in detail in this paper. We will eventually deduce a very si...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید

function paginate(evt) { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term pg=parseInt(evt.target.text) var data={ "year":filter_year, "term":term, "pgn":pg } filtered_res=post_and_fetch(data,url) window.scrollTo(0,0); } function update_search_meta(search_meta) { meta_place=document.getElementById("search_meta_data") term=search_meta.term active_pgn=search_meta.pgn num_res=search_meta.num_res num_pages=search_meta.num_pages year=search_meta.year meta_place.dataset.term=term meta_place.dataset.page=active_pgn meta_place.dataset.num_res=num_res meta_place.dataset.num_pages=num_pages meta_place.dataset.year=year document.getElementById("num_result_place").innerHTML=num_res if (year !== "unfilter"){ document.getElementById("year_filter_label").style="display:inline;" document.getElementById("year_filter_place").innerHTML=year }else { document.getElementById("year_filter_label").style="display:none;" document.getElementById("year_filter_place").innerHTML="" } } function update_pagination() { search_meta_place=document.getElementById('search_meta_data') num_pages=search_meta_place.dataset.num_pages; active_pgn=parseInt(search_meta_place.dataset.page); document.getElementById("pgn-ul").innerHTML=""; pgn_html=""; for (i = 1; i <= num_pages; i++){ if (i===active_pgn){ actv="active" }else {actv=""} pgn_li="
  • " +i+ "
  • "; pgn_html+=pgn_li; } document.getElementById("pgn-ul").innerHTML=pgn_html var pgn_links = document.querySelectorAll('.mypgn'); pgn_links.forEach(function(pgn_link) { pgn_link.addEventListener('click', paginate) }) } function post_and_fetch(data,url) { showLoading() xhr = new XMLHttpRequest(); xhr.open('POST', url, true); xhr.setRequestHeader('Content-Type', 'application/json; charset=UTF-8'); xhr.onreadystatechange = function() { if (xhr.readyState === 4 && xhr.status === 200) { var resp = xhr.responseText; resp_json=JSON.parse(resp) resp_place = document.getElementById("search_result_div") resp_place.innerHTML = resp_json['results'] search_meta = resp_json['meta'] update_search_meta(search_meta) update_pagination() hideLoading() } }; xhr.send(JSON.stringify(data)); } function unfilter() { url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":"unfilter", "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } function deactivate_all_bars(){ var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(bar) { bar.dataset.active = false bar.style = "stroke:#71a3c5;" }) } year_chart.on("created", function() { var yrchart = document.querySelectorAll('.ct-bar'); yrchart.forEach(function(check) { check.addEventListener('click', checkIndex); }) }); function checkIndex(event) { var yrchart = document.querySelectorAll('.ct-bar'); var year_bar = event.target if (year_bar.dataset.active == "true") { unfilter_res = unfilter() year_bar.dataset.active = false year_bar.style = "stroke:#1d2b3699;" } else { deactivate_all_bars() year_bar.dataset.active = true year_bar.style = "stroke:#e56f6f;" filter_year = chart_data['labels'][Array.from(yrchart).indexOf(year_bar)] url=/search_year_filter/ var term=document.getElementById("search_meta_data").dataset.term var data={ "year":filter_year, "term":term, "pgn":1 } filtered_res=post_and_fetch(data,url) } } function showLoading() { document.getElementById("loading").style.display = "block"; setTimeout(hideLoading, 10000); // 10 seconds } function hideLoading() { document.getElementById("loading").style.display = "none"; } -->