نتایج جستجو برای: $pi$-Regular
تعداد نتایج: 165148 فیلتر نتایج به سال:
r is called commuting regular ring (resp. semigroup) if for each x,y $in$ r thereexists a $in$ r such that xy = yxayx. in this paper, we introduce the concept of commuting$pi$-regular rings (resp. semigroups) and study various properties of them.
R is called commuting regular ring (resp. semigroup) if for each x,y $in$ R there exists a $in$ R such that xy = yxayx. In this paper, we introduce the concept of commuting $pi$-regular rings (resp. semigroups) and study various properties of them.
let $r$ be an associative ring with identity. an element $x in r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if there exist $g in g$, $n in mathbb{z}$ and $r in r$ such that $x^{ng}=x^{ng}rx^{ng}$ (resp. $x^{ng}=x^{(n+1)g}$). a ring $r$ is called $mathbb{z}g$-regular (resp. strongly $mathbb{z}g$-regular) if every element of $r$ is $mathbb{z}g$-regular (resp. strongly $...
in this paper we prove that each element of any regular baer ring is a sum of two units if no factor ring of r is isomorphic to z_2 and we characterize regular baer rings with unit sum numbers $omega$ and $infty$. then as an application, we discuss the unit sum number of some classes of group rings.
A lot of research and various techniques have been devoted for finding the topological descriptor Wiener index, but most of them deal with only particular cases. There exist three regular plane tessellations, composed of the same kind of regular polygons namely triangular, square, and hexagonal. Using edge congestion-sum problem, we devise a method to compute the Wiener index and demonstrate th...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید