نتایج جستجو برای: $n$-cosemihereditary ring
تعداد نتایج: 1072548 فیلتر نتایج به سال:
let $r$ be a ring, and let $n, d$ be non-negative integers. a right $r$-module $m$ is called $(n, d)$-projective if $ext^{d+1}_r(m, a)=0$ for every $n$-copresented right $r$-module $a$. $r$ is called right $n$-cocoherent if every $n$-copresented right $r$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $r$-module is $(n, d)$-projective. $r$ ...
Let $R$ be a ring, and let $n, d$ be non-negative integers. A right $R$-module $M$ is called $(n, d)$-projective if $Ext^{d+1}_R(M, A)=0$ for every $n$-copresented right $R$-module $A$. $R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted, it is called a right co-$(n,d)$-ring if every right $R$-module is $(n, d)$-projective. $R$...
Let $R$ be a ring, $n$ an non-negative integer and $d$ positive or $\infty$. A right $R$-module $M$ is called \emph{$(n,d)^*$-projective} if ${\rm Ext}^1_R(M, C)=0$ for every $n$-copresented $C$ of injective dimension $\leq d$; ring \emph{right $(n,d)$-cocoherent} with $id(C)\leq d$ $(n+1)$-copresented; $(n,d)$-cosemihereditary} whenever $0\rightarrow C\rightarrow E\rightarrow A\rightarrow 0$ e...
in this paper, we introduce the new notion of n-f-clean rings as a generalization of f-clean rings. next, we investigate some properties of such rings. we prove that mn(r) is n-f-clean for any n-f-clean ring r. we also, get a condition under which the denitions of n-cleanness and n-f-cleanness are equivalent.
in this work, we investigate the transfer of some homological properties from a ring $r$ to its amalgamated duplication along some ideal $i$ of $r$ $rbowtie i$, and then generate new and original families of rings with these properties.
Let $nin mathbb{N}$. An additive map $h:Ato B$ between algebras $A$ and $B$ is called $n$-Jordan homomorphism if $h(a^n)=(h(a))^n$ for all $ain A$. We show that every $n$-Jordan homomorphism between commutative Banach algebras is a $n$-ring homomorphism when $n < 8$. For these cases, every involutive $n$-Jordan homomorphism between commutative C-algebras is norm continuous.
In this paper, we investigate the generalized Hyers-Ulam-Rassias and the Isac and Rassias-type stability of the conditional of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras. As a consequence of this, we prove the hyperstability of orthogonally ring $*$-$n$-derivation and orthogonally ring $*$-$n$-homomorphism on $C^*$-algebras.
for a fixed positive integer , we say a ring with identity is n-generalized right principally quasi-baer, if for any principal right ideal of , the right annihilator of is generated by an idempotent. this class of rings includes the right principally quasi-baer rings and hence all prime rings. a certain n-generalized principally quasi-baer subring of the matrix ring are studied, and connections...
throughout this dissertation r is a commutative ring with identity and m is a unitary r-module. in this dissertation we investigate submodules of multiplication , prufer and dedekind modules. we also stat the equivalent conditions for which is ring , wher l is a submodule of afaithful multiplication prufer module. we introduce the concept of integrally closed modules and show that faithful mu...
let $r$ be a ring with unity. the undirected nilpotent graph of $r$, denoted by $gamma_n(r)$, is a graph with vertex set ~$z_n(r)^* = {0neq x in r | xy in n(r) for some y in r^*}$, and two distinct vertices $x$ and $y$ are adjacent if and only if $xy in n(r)$, or equivalently, $yx in n(r)$, where $n(r)$ denoted the nilpotent elements of $r$. recently, it has been proved that if $r$ is a left ar...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید