نتایج جستجو برای: $m$-additive functional equation

تعداد نتایج: 1361976  

Journal: :sahand communications in mathematical analysis 2015
ismail nikoufar

the stability problem of the functional equation was conjectured by ulam and was solved by hyers in the case of additive mapping. baker et al. investigated the superstability of the functional equation from a vector space to real numbers.in this paper, we exhibit the superstability of $m$-additive maps on complete non--archimedean spaces via a fixed point method raised by diaz and margolis.

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

پایان نامه :وزارت علوم، تحقیقات و فناوری - دانشگاه پیام نور - دانشگاه پیام نور استان خراسان رضوی - دانشکده علوم انسانی و مدیریت 1389

هدف اصلی ما در این پایان نامه، مطالعه عملگردهای مثبت و نگاشت های حالت روی * – جبرهای باناخ و –c* جبرها می باشد. در وهله بعدی *- ایزومورفیسم های بین –c* جبرهای یکدار را مورد مطالعه قرای می دهیم . علاوه بر موارد فوق، پایداری –j* مشتقها روی –j* جبرها را به عنوان کاربردی از قضیه نقطه ثابت تعمیم یافته مورد مطالعه قرار می دهیم و نهایتا با پیدا کردن حل عمومی برای معادله تابعی ترکیبی چهارتایی جمعی، درج...

Journal: :international journal of nonlinear analysis and applications 2010
h. khodaei m. kamyar

moslehian  and mirmostafaee, investigated the fuzzystability problems for the cauchy additive functional equation, the jensen additivefunctional equation and the cubic functional equation in fuzzybanach spaces. in this paper, we investigate thegeneralized hyers–-ulam--rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy banachspaces. also, we will show ...

H. Khodaei M. Kamyar

Moslehian  and Mirmostafaee, investigated the fuzzystability problems for the Cauchy additive functional equation, the Jensen additivefunctional equation and the cubic functional equation in fuzzyBanach spaces. In this paper, we investigate thegeneralized Hyers–-Ulam--Rassias stability of the generalizedadditive functional equation with $n$--variables, in fuzzy Banachspaces. Also, we will show ...

Journal: :international journal of industrial mathematics 2015
r. saadati

‎hensel [k‎. ‎hensel‎, ‎deutsch‎. ‎math‎. ‎verein‎, ‎{6} (1897), ‎83-88.] discovered the $p$-adic number as a‎ ‎number theoretical analogue of power series in complex analysis‎. ‎fix ‎a prime number $p$‎. ‎for any nonzero rational number $x$‎, ‎there‎ ‎exists a unique integer $n_x inmathbb{z}$ such that $x = ‎frac{a}{b}p^{n_x}$‎, ‎where $a$ and $b$ are integers not divisible by ‎$p$‎. ‎then $|x...

In this paper, using the fixed point and direct methods, we prove the generalized Hyers-Ulam-Rassias stability of the following Cauchy-Jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. The concept of Hyers-Ulam-Rassias stability originated from Th. M. Rassias’ stability theorem t...

Journal: :bulletin of the iranian mathematical society 2015
m. s. shiri h. azadi kenary

in this paper, using the fixed point and direct methods, we prove the generalized hyers-ulam-rassias stability of the following cauchy-jensen additive functional equation: begin{equation}label{main} fleft(frac{x+y+z}{2}right)+fleft(frac{x-y+z}{2}right)=f(x)+f(z)end{equation} in various normed spaces. the concept of hyers-ulam-rassias stability originated from th. m. rassias’ stability theorem t...

Journal: :caspian journal of mathematical sciences 2014
h. azadi kenary a. toorani a. heidarzadegan

‎in this paper‎, ‎using fixed point method‎, ‎we prove the generalized hyers-ulam stability of‎ ‎random homomorphisms in random $c^*$-algebras and random lie $c^*$-algebras‎ ‎and of derivations on non-archimedean random c$^*$-algebras and non-archimedean random lie c$^*$-algebras for‎ ‎the following $m$-variable additive functional equation:‎ ‎$$sum_{i=1}^m f(x_i)=frac{1}{2m}left[sum_{i=1}^mfle...

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید