نتایج جستجو برای: $epsilon$-nearly Parseval frame
تعداد نتایج: 222809 فیلتر نتایج به سال:
In this paper, we will provide a simple method for starting with a given finite frame for an $n$-dimensional Hilbert space $mathcal{H}_n$ with nonzero elements and producing a frame which is $epsilon$-nearly Parseval and $epsilon$-nearly unit norm. Also, the concept of the $epsilon$-nearly equal frame operators for two given frames is presented. Moreover, we characterize all bounded invertible ...
A probabilistic frame is a Borel probability measure with finite second moment whose support spans R. A Parseval probabilistic frame is one for which the associated matrix of second moment is the identity matrix in R. Each probabilistic frame is canonically associated to a Parseval probabilistic frame. In this paper, we show that this canonical Parseval probabilistic frame is the closest Parsev...
Let {xn} be a frame for a Hilbert space H. We investigate the conditions under which there exists a dual frame for {xn} which is also a Parseval (or tight) frame. We show that the existence of a Parseval dual is equivalent to the problem whether {xn} can be dilated to an orthonormal basis (under an oblique projection). A necessary and sufficient condition for the existence of Parseval duals is ...
The purpose of this paper is to reveal the deep and rich structure of the set of Parseval frame wavelets. Two main directions are pursued. First, we study the reproducing properties of the translates of a Parseval frame wavelet within the closed linear span that the translates generate. In particular, we show that the translates need not have good reproducing properties, even though the transla...
Abstract. A composite dilation Parseval frame wavelet is a collection of functions generating a Parseval frame for L2(Rn) under the actions of translations from a full rank lattice and dilations by products of elements of groups A and B. A minimally supported frequency composite dilation Parseval frame wavelet has generating functions whose Fourier transforms are characteristic functions of set...
Parseval frames can be thought of as redundant or linearly dependent coordinate systems for Hilbert spaces, and have important applications in such areas as signal processing, data compression, and sampling theory. We extend the notion of a Parseval frame for a fixed Hilbert space to that of a moving Parseval frame for a vector bundle over a manifold. Many vector bundles do not have a moving ba...
Hilbert space frame theory has applications to various areas of pure mathematics, applied mathematics, and engineering. However, the question of how applying an invertible operator to a frame changes its properties has not yet been satisfactorily answered, and only partial results are known to date. In this paper, we will provide a comprehensive study of those questions, and, in particular, pro...
We study singly-generated wavelet systems on R that are naturally associated with rank-one wavelet systems on the Heisenberg group N . We prove a necessary condition on the generator in order that any such system be a Parseval frame. Given a suitable subset I of the dual of N , we give an explicit construction for Parseval frame wavelets that are associated with I . We say that g ∈ L(I×R) is Ga...
in this paper we study the duality of bessel and g-bessel sequences in hilbertspaces. we show that a bessel sequence is an inner summand of a frame and the sum of anybessel sequence with bessel bound less than one with a parseval frame is a frame. next wedevelop this results to the g-frame situation.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید