Let $T$ be a positive closed current of bidimension $(1,1)$ with unit mass on $\mathbb P^2$ and $V_{\alpha}(T)$ the upper level sets Lelong numbers $\nu(T,x)$ $T$. For any $\alpha\geq \frac{1}{3}$, we show that $|V_{\alpha}(T)\setminus C|\leq 2$ for some cubic curve $C$.