نتایج جستجو برای: $L$-fuzzy Q-convergence
تعداد نتایج: 913349 فیلتر نتایج به سال:
in this paper, we discuss the equivalent conditions of pretopological and topological $l$-fuzzy q-convergence structures and define $t_{0},~t_{1},~t_{2}$-separation axioms in $l$-fuzzy q-convergence space. {furthermore, $l$-ordered q-convergence structure is introduced and its relation with $l$-fuzzy q-convergence structure is studied in a categorical sense}.
This paper presents the concepts of $(L,M)$-fuzzy Q-convergence spaces and stratified $(L,M)$-fuzzy Q-convergence spaces. It is shown that the category of stratified $(L,M)$-fuzzy Q-convergence spaces is a bireflective subcategory of the category of $(L,M)$-fuzzy Q-convergence spaces, and the former is a Cartesian-closed topological category. Also, it is proved that the category of stratified $...
In this paper, we discuss the equivalent conditions of pretopological and topological $L$-fuzzy Q-convergence structures and define $T_{0},~T_{1},~T_{2}$-separation axioms in $L$-fuzzy Q-convergence space. {Furthermore, $L$-ordered Q-convergence structure is introduced and its relation with $L$-fuzzy Q-convergence structure is studied in a categorical sense}.
The definition of $L$-fuzzy Q-convergence spaces is presented by Pang and Fang in 2011. However, Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces is not investigated. This paper focuses on Cartesian-closedness of the category of $L$-fuzzy Q-convergence spaces, and it is shown that the category $L$-$mathbf{QFCS}$ of $L$-fuzzy Q-convergence spaces is Cartesian-closed.
In this paper, we first construct the function space of (L, M)-fuzzy Q-convergence spaces to show Cartesian-closedness category M)-QC spaces. Secondly, introduce several subcategories M)-QC, including M)-KQC Kent spaces, M)-LQC Q-limit and M)-PQC pretopological investigate their relationships.
The aim of this paper is to extend the truth value table oflattice-valued convergence spaces to a more general case andthen to use it to introduce and study the quantale-valued fuzzy Scotttopology in fuzzy domain theory. Let $(L,*,varepsilon)$ be acommutative unital quantale and let $otimes$ be a binary operationon $L$ which is distributive over nonempty subsets. The quadruple$(L,*,otimes,varep...
based on a complete heyting algebra, we modify the definition oflattice-valued fuzzifying convergence space using fuzzy inclusionorder and construct in this way a cartesian-closed category, calledthe category of $l-$ordered fuzzifying convergence spaces, in whichthe category of $l-$fuzzifying topological spaces can be embedded.in addition, two new categories are introduced, which are called the...
we show that the category of convergence approach spaces is a simultaneously reective and coreective subcategory of the category of latticevalued limit spaces. further we study the preservation of diagonal conditions, which characterize approach spaces. it is shown that the category of preapproach spaces is a simultaneously reective and coreective subcategory of the category of lattice-valued p...
The convergence theory not only is an significantly basic theory of fuzzy topology and fuzzy analysis but also has wide applications in fuzzy inference and some other aspects. In this paper, we introduce the concept of α-generalized-remoteneighborhood of fuzzy points and establish the Moore-Smith α-generalized-convergence theory of L-fuzzy nets. Then, we introduce and study the concept of L-fuz...
Considering a commutative unital quantale L as the truth value table and using the tool of L-generalized convergence structures of stratified L-filters, this paper introduces a kind of fuzzy upper topology, called fuzzy S-upper topology, on L-preordered sets. It is shown that every fuzzy join-preserving L-subset is open in this topology. When L is a complete Heyting algebra, for every completel...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید