نتایج جستجو برای: $J$-quasipolar ring
تعداد نتایج: 389203 فیلتر نتایج به سال:
in this paper, we introduce a class of $j$-quasipolar rings. let $r$ be a ring with identity. an element $a$ of a ring $r$ is called {it weakly $j$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $j(r)$ and the ring $r$ is called {it weakly $j$-quasipolar} if every element of $r$ is weakly $j$-quasipolar. we give many characterizations and investiga...
In this paper, we introduce a class of $J$-quasipolar rings. Let $R$ be a ring with identity. An element $a$ of a ring $R$ is called {it weakly $J$-quasipolar} if there exists $p^2 = pin comm^2(a)$ such that $a + p$ or $a-p$ are contained in $J(R)$ and the ring $R$ is called {it weakly $J$-quasipolar} if every element of $R$ is weakly $J$-quasipolar. We give many characterizations and investiga...
Let $f:Arightarrow B$ and $g:A rightarrow C$ be two ring homomorphisms and let $J$ and $J^{'}$ be two ideals of $B$ and $C$, respectively, such that $f^{-1}(J)=g^{-1}(J^{'})$. The bi-amalgamation of $A$ with $(B,C)$ along $(J,J^{'})$ with respect of $(f,g)$ is the subring of $Btimes C$ given by $Abowtie^{f,g}(J,J^{'})={(f(a)+j,g(a)+j^{'})/ a in A, (j,j^{'}) in Jtimes J^{'}}.$ In ...
let $r=k[x_1,x_2,cdots, x_n]$ be a polynomial ring over a field $k$. we prove that for any positive integers $m, n$, $text{reg}(i^mj^nk)leq mtext{reg}(i)+ntext{reg}(j)+text{reg}(k)$ if $i, j, ksubseteq r$ are three monomial complete intersections ($i$, $j$, $k$ are not necessarily proper ideals of the polynomial ring $r$), and $i, j$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
Let $(R,fm,k)$ be a local Gorenstein ring of dimension $n$. Let $H_{I,J}^i(R)$ be the local cohomology with respect to a pair of ideals $I,J$ and $c$ be the $inf{i|H_{I,J}^i(R)neq0}$. A pair of ideals $I, J$ is called cohomologically complete intersection if $H_{I,J}^i(R)=0$ for all $ineq c$. It is shown that, when $H_{I,J}^i(R)=0$ for all $ineq c$, (i) a minimal injective resolution of $H_{I,...
let $f: arightarrow b$ be a ring homomorphism and let $j$ be an ideal of $b$. in this paper, we investigate the transfer of the property of coherence to the amalgamation $abowtie^{f}j$. we provide necessary and sufficient conditions for $abowtie^{f}j$ to be a coherent ring.
Let $R=k[x_1,x_2,cdots, x_N]$ be a polynomial ring over a field $k$. We prove that for any positive integers $m, n$, $text{reg}(I^mJ^nK)leq mtext{reg}(I)+ntext{reg}(J)+text{reg}(K)$ if $I, J, Ksubseteq R$ are three monomial complete intersections ($I$, $J$, $K$ are not necessarily proper ideals of the polynomial ring $R$), and $I, J$ are of the form $(x_{i_1}^{a_1}, x_{i_2}^{a_2}, cdots, x_{i_l...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید