نتایج جستجو برای: zns quantum dots
تعداد نتایج: 305904 فیلتر نتایج به سال:
Colloidal semiconductor quantum dots have three-dimensional confined excitons with large optical oscillator strength and gain. The surface plasmons of metallic nanostructures offer an efficient tool to enhance exciton-exciton coupling and excitation energy transfer at appropriate geometric arrangement. Here, we report plasmon-mediated cooperative emissions of approximately one monolayer of ense...
This paper reports on the temperature-dependent photoluminescence of InP/ZnS quantum dots under 532 nm excitation, which is above the InP transition energy but well below that of ZnS. The overall photoluminescence spectra show two spectral components. The higher-energy one (named X) is assigned to originate from the excitonic transition; while the low-energy spectral component (named I) is norm...
Based on 15-crown-5 functionalized CdSe/ZnS quantum dots (QDs), we report a novel fluorogenic sensor to probe K+ ions in H2O; recognition of K+ can be achieved via the Förster type of energy transfer between two different color QDs, so that [K+] of the order of 10(-6) M can be promptly detected.
CTAB-coated Au nanorods were directly self-assembled into a vertically aligned monolayer with highly uniform hot spots through a simple but robust approach. By coupling with CdSe/ZnS quantum dots, a maximum enhancement of 10.4 is achieved due to: increased excitation transition rate, radiative rate, and coupling efficiency of emission to the far field.
High performance field-induced AC electroluminescence (EL) in a simple ITO/insulator/hybrid emitter/Au structure was demonstrated with efficient control of the brightness and colors based on solution-processed nanohybrids of CdSe-ZnS core-shell colloidal quantum dots and fluorescent polymers.
We used CdSe/ZnS quantum dots-ssDNA-fluorescent dye conjugates as bioprobes to detect micrococcal nuclease with high specificity and sensitivity, and further utilized the bioprobe to monitor the micrococcal nuclease activity in the culture medium of Staphylococcus aureus by fluorescence microscopy.
In this work, we investigate the thermal evolution of CdSe-CdS-ZnS core-multishell quantum dots (QDs) in situ using transmission electron microscopy (TEM). Starting at a temperature of approximately 250 °C, Zn diffusion into inner layers takes place together with simultaneous evaporation of particularly Cd and S. As a result of this transformation, CdxZn1-xSe-CdyZn1-yS core-shell QDs are obtained.
A new hybrid photoelectrochemical photoanode is developed to generate H2 from water. The anode is composed of a TiO2 mesoporous frame functionalized by colloidal core@shell quantum dots (QDs) followed by CdS and ZnS capping layers. Saturated photocurrent density as high as 11.2 mA cm-2 in a solar-cell-driven photoelectrochemical system using near-infrared QDs is obtained.
We demonstrated that by properly coupling to silver nanoprisms, single CdSe/ZnS semiconductor quantum dots (QDs) exhibited suppressed blinking behavior, an enhanced fluorescence intensity ( approximately 2.5 fold), increased radiative decay rates ( approximately 12.5 fold), and antibunching single-photon emission. All these modifications significantly promote the overall performance of the prop...
The photoluminescence of mercaptoacetic acid (MAA)-capped CdSe/ZnSe/ZnS semiconductor nanocrystal quantum dots (QDs) in SKOV-3 human ovarian cancer cells is pH-dependent, suggesting applications in which QDs serve as intracellular pH sensors. In both fixed and living cells the fluorescence intensity of intracellular MAA-capped QDs (MAA QDs) increases monotonically with increasing pH. The electr...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید