نتایج جستجو برای: zinc oxide nanorods

تعداد نتایج: 243294  

2014
Nurul Fariha Ahmad Nurul Izni Rusli Mohamad Rusop Mahmood Kanji Yasui Abdul Manaf Hashim

We report the seed/catalyst-free growth of ZnO on multilayer graphene by thermal evaporation of Zn in the presence of O2 gas. The effects of substrate temperatures were studied. The changes of morphologies were very significant where the grown ZnO structures show three different structures, i.e., nanoclusters, nanorods, and thin films at 600°C, 800°C, and 1,000°C, respectively. High-density ver...

Journal: :Chemical communications 2015
Pradip Pachfule Sharath Kandmabeth Arijit Mallick Rahul Banerjee

Hollow and tubular TpPa-COF structures have been synthesized by template-assisted replication of nanometer sized ZnO-nanorods. The hollow structures composed of microporous TpPa shells have high periodicity, moderate porosity, chemical stability and capsule shaped morphology as revealed by X-ray diffraction, porosity measurements, and SEM and TEM analyses.

Journal: :The journal of physical chemistry. B 2005
U Pal P Santiago

ZnO nanostructures of different morphologies were grown in a controlled manner using a simple low-temperature hydrothermal technique. Controlling the content of ethylenediamine (soft surfactant) and the pH of the reaction mixture, nanoparticles, nanorods, and flowerlike ZnO structures could be synthesized at temperatures 80-100 degrees C with excellent reproducibility. High-resolution electron ...

Journal: :Nanoscale 2014
Manpreet Singh Sheng Song Jong-in Hahm

Zinc oxide nanorods (ZnO NRs) have emerged in recent years as extremely useful, optical signal-enhancing platforms in DNA and protein detection. Although the use of ZnO NRs in biodetection has been demonstrated so far in systems involving many ZnO NRs per detection element, their future applications will likely take place in a miniaturized setting while exploiting single ZnO NRs in a low-volume...

2013
Danhua Xu Donghua Fan Wenzhong Shen

We report a simple catalyst-free vapor-phase method to fabricate Zn1-xCuxO micro-cross structures. Through a series of controlled experiments by changing the location of the substrate and reaction time, we have realized the continuous evolution of product morphology from nanorods into brush-like structures and micro-cross structures at different positions, together with the epitaxial growth of ...

Journal: :Nanotechnology 2016
Chen Zhang Xiaohu Huang Hongfei Liu Soo Jin Chua Caroline A Ross

Vertically aligned, highly ordered, large area arrays of nanostructures are important building blocks for multifunctional devices. Here, ZnO nanorod arrays are selectively synthesized on Si substrates by a solution method within patterns created by nanoimprint lithography. The growth modes of two dimensional nucleation-driven wedding cakes and screw dislocation-driven spirals are inferred to de...

2016
Yichong Liu Xiaoqin Yan Zhuo Kang Yong Li Yanwei Shen Yihui Sun Li Wang Yue Zhang

One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve t...

Journal: :Nano letters 2004
Xudong Wang Christopher J Summers Zhong Lin Wang

An effective approach is demonstrated for growing large-area, hexagonally patterned, aligned ZnO nanorods. The synthesis uses a catalyst template produced by a self-assembled monolayer of submicron spheres and guided vapor-liquid-solid (VLS) growth on a single crystal alumina substrate. The ZnO nanorods have uniform shape and length, align vertically on the substrate, and are distributed accord...

Journal: :Nanoscale 2013
Yu-Ting Zhou Weiwei He Wayne G Wamer Xiaona Hu Xiaochun Wu Y Martin Lo Jun-Jie Yin

Au@Pt nanorods were prepared by growing platinum nanodots on gold nanorods. Using electron spin resonance (ESR), we determined that the mechanisms for oxidation of ascorbic acid (AA) by Au@Pt nanorods and ascorbic acid oxidase (AAO) were kinetically similar and yielded similar products. In addition we observed that Au@Pt nanorods were stable with respect to temperature and pH. Using UV-VIS spec...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید