In this paper we consider, for a finite commutative ring R, the wellstudied zero-divisor graph Γ(R) and the compressed zero-divisor graph Γc(R) of R and a newly-defined graphical structure — the zero-divisor lattice Λ(R) of R. We give results which provide information when Γ(R) ∼= Γ(S), Γc(R) ∼= Γc(S), and Λ(R) ∼= Λ(S) for two finite commutative rings R and S. We also provide a theorem which sa...