نتایج جستجو برای: yersinia pestis
تعداد نتایج: 6946 فیلتر نتایج به سال:
Suppression subtractive hybridization, a cost-effective approach for targeting unique DNA, was used to identify a 41.7-kb Yersinia pestis-specific region. One primer pair designed from this region amplified PCR products from natural isolates of Y. pestis and produced no false positives for near neighbors, an important criterion for unambiguous bacterial identification.
Yersinia pestis DNA was recently detected in human remains from 2 ancient plague pandemics in France and Germany. We have now sequenced Y pestis glpD gene in such remains, showing a 93-bp deletion specific for biotype Orientalis. These data show that only Orientalis type caused the 3 plague pandemics.
Here, we report the genome sequence of Yersinia pestis strain Cadman, an attenuated strain lacking the pgm locus. Y. pestis is the causative agent of plague and generally must be worked with under biosafety level 3 (BSL-3) conditions. However, strains lacking the pgm locus are considered safe to work with under BSL-2 conditions.
The utility of Etest for antimicrobial susceptibility testing of Yersinia pestis was evaluated in comparison with broth microdilution and disk diffusion for eight agents. Four laboratories tested 26 diverse strains and found Etest to be reliable for testing antimicrobial agents used to treat Y. pestis, except for chloramphenicol and trimethoprim-sulfamethoxazole. Disk diffusion testing is not r...
An F-lac plasmid from Escherichia coli was transferred to virulent Yersinia pestis, resulting in the repression of virulence. The Y. pestis F-lac clones retained all of the known virulence traits but were avirulent and calcium independent. Every lac segregant derived from the F-lac clones was fully virulent and calcium dependent.
We deciphered the genome of Yersinia pestis strain 2501, isolated from the Junggar Basin, a newly discovered great gerbil plague focus in Xinjiang, China. The total length of assembly was 4,597,322 bp, and 4,265 coding sequences were predicted within the genome. It is the first Y. pestis genome from this plague focus.
As part of a fatal human plague case investigation, we showed that the plague bacterium, Yersinia pestis, can survive for at least 24 days in contaminated soil under natural conditions. These results have implications for defining plague foci, persistence, transmission, and bioremediation after a natural or intentional exposure to Y. pestis.
Multilocus sequence analysis of 417 strains of Yersinia pseudotuberculosis revealed that it is a complex of four populations, three of which have been previously assigned species status [Y. pseudotuberculosis sensu stricto (s.s.), Yersinia pestis and Yersinia similis] and a fourth population, which we refer to as the Korean group, which may be in the process of speciation. We detected clear sig...
Yersinia pestis, which is the causative agent of plague, has acquired exceptional pathogenicity potential during its evolution from Y. pseudotuberculosis. Two laterally acquired plasmids, namely, pMT1 and pPCP1, are specific to Y. pestis and are critical for pathogenesis and flea transmission. Small regulatory RNAs (sRNAs) commonly function as regulators of gene expression in bacteria. MicF, is...
Yersinia pestis, the bacterial agent of plague, secretes several proteins important for pathogenesis or host protection. The F1 protein forms a capsule on the bacterial cell surface and is a well-characterized protective antigen but is not essential for virulence. A type III secretion system that is essential for virulence exports Yop proteins, which function as antiphagocytic or anti-inflammat...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید