نتایج جستجو برای: weak signed roman k dominating function
تعداد نتایج: 1688331 فیلتر نتایج به سال:
A total Roman dominating function on a graph $G$ is a function $f: V(G) rightarrow {0,1,2}$ such that for every vertex $vin V(G)$ with $f(v)=0$ there exists a vertex $uin V(G)$ adjacent to $v$ with $f(u)=2$, and the subgraph induced by the set ${xin V(G): f(x)geq 1}$ has no isolated vertices. The total Roman domination number of $G$, denoted $gamma_{tR}(G)$, is the minimum weight $omega(f)=sum_...
A Roman dominating function of a graph G is a function f : V → {0, 1, 2} such that every vertex with 0 has a neighbor with 2. The minimum of f (V (G)) = ∑ v∈V f (v) over all such functions is called the Roman domination number γR(G). A 2-rainbow dominating function of a graphG is a function g that assigns to each vertex a set of colors chosen from the set {1, 2}, for each vertex v ∈ V (G) such ...
1)فرض کنید g=(v,e) یک گراف ساده باشد.همسا یگی بسته رأس v?v را بصورت زیر نشان می دهیم : n[v]={u:uv?e}?{v} 2)تابعf:v?{-1,1} را تابع غالب علامت دار(signed dominating function یا به اختصار s.d.f) نامیم هرگاه به ازای هر v?v داشته باشیم f[v]=?_(u?n[v])?f(u) ?1:. 3)وزنfکه یکsdfمی باشد به صورت مقابل تعریف می شود: f(g)=?_(v?v)?f(v) . 4)می نیمم وزن تابع غالب علامتدار تعریف شده روی گراف g را با نماد?_s ...
This paper is devoted to the study of quadruple Roman domination in trees, and it a contribution Special Issue “Theoretical computer science discrete mathematics” Symmetry. For any positive integer k, [k]-Roman dominating function ([k]-RDF) simple graph G from vertex set V {0,1,2,…,k+1} if for u?V with f(u)<k, ?x?N(u)?{u}f(x)?|{x?N(u):f(x)?1}|+k, where N(u) open neighborhood u. The weight [k...
Let G = (V, E) be a simple graph on vertex set V and define a function f : V → {−1, 1}. The function f is a signed dominating function if for every vertex x ∈ V , the closed neighborhood of x contains more vertices with function value 1 than with −1. The signed domination number of G, γs(G), is the minimum weight of a signed dominating function on G. Let G denote the complement of G. In this pa...
in this paper, we define the common minimal common neighborhooddominating signed graph (or common minimal $cn$-dominating signedgraph) of a given signed graph and offer a structuralcharacterization of common minimal $cn$-dominating signed graphs.in the sequel, we also obtained switching equivalencecharacterization: $overline{sigma} sim cmcn(sigma)$, where$overline{sigma}$ and $cmcn(sigma)$ are ...
Let G = (V, E) be a simple graph with vertex set V and edge set E. A function f from V to a set {-1, 1} is said to be a nonnegative signed dominating function (NNSDF) if the sum of its function values over any closed neighborhood is at least zero. The weight of f is the sum of function values of vertices in V. The nonnegative signed domination number for a graph G equals the minimum weight of a...
for any integer $kge 1$, a minus $k$-dominating function is a function $f : v (g)rightarrow {-1,0, 1}$ satisfying $sum_{winn[v]} f(w)ge k$ for every $vin v(g)$, where $n(v) ={u inv(g)mid uvin e(g)}$ and $n[v] =n(v)cup {v}$. the minimum ofthe values of $sum_{vin v(g)}f(v)$, taken over all minus$k$-dominating functions $f$, is called the minus $k$-dominationnumber and i...
Let G = (V , E) be a simple graph on vertex set V and define a function f : V → {−1,1}. The function f is a signed dominating function if for every vertex x ∈ V , the closed neighborhood of x contains more vertices with function value 1 than with −1. The signed domination number of G, γs(G), is the minimum weight of a signed dominating function on G. We give a sharp lower bound on the signed do...
This article has no abstract.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید