نتایج جستجو برای: upper domatic number
تعداد نتایج: 1344288 فیلتر نتایج به سال:
for any integer $kgeq 1$, a set $s$ of vertices in a graph $g=(v,e)$ is a $k$-tuple total dominating set of $g$ if any vertex of $g$ is adjacent to at least $k$ vertices in $s$, and any vertex of $v-s$ is adjacent to at least $k$ vertices in $v-s$. the minimum number of vertices of such a set in $g$ we call the $k$-tuple total restrained domination number of $g$. the maximum num...
For a positive integer k, a k-rainbow dominating function of a digraph D is a function f from the vertex set V (D) to the set of all subsets of the set {1, 2, . . . , k} such that for any vertex v ∈ V (D) with f(v) = ∅ the condition u∈N−(v) f(u) = {1, 2, . . . , k} is fulfilled, where N−(v) is the set of in-neighbors of v. A set {f1, f2, . . . , fd} of k-rainbow dominating functions on D with t...
A subset D of the vertex set V (G) of a graph G is called point-set dominating, if for each subset S ⊆ V (G) − D there exists a vertex v ∈ D such that the subgraph of G induced by S ∪ {v} is connected. The maximum number of classes of a partition of V (G), all of whose classes are point-set dominating sets, is the point-set domatic number dp(G) of G. Its basic properties are studied in the paper.
A subset D of V (G) is called an equitable dominating set of a graph G if for every v ∈ (V − D), there exists a vertex u ∈ D such that uv ∈ E(G) and |deg(u) − deg(v)| 6 1. The minimum cardinality of such a dominating set is denoted by γe(G) and is called equitable domination number of G. In this paper we introduce the equitable edge domination and equitable edge domatic number in a graph, exact...
For a nonempty graph G = (V, E), a signed edge-domination of G is a function f : E(G) → {1,−1} such that ∑e′∈NG [e] f (e′) ≥ 1 for each e ∈ E(G). The signed edge-domatic number of G is the largest integer d for which there is a set { f1, f2, . . . , fd} of signed edge-dominations of G such that ∑d i=1 fi (e) ≤ 1 for every e ∈ E(G). This paper gives an original study on this concept and determin...
Let G = (V, E) be a graph. A subset D of V is called common neighbourhood dominating set (CN-dominating set) if for every v ∈ V −D there exists a vertex u ∈ D such that uv ∈ E(G) and |Γ(u, v)| > 1, where |Γ(u, v)| is the number of common neighbourhood between the vertices u and v. The minimum cardinality of such CN-dominating set denoted by γcn(G) and is called common neighbourhood domination n...
A Roman dominating function (RDF) on a digraph $D$ is a function $f: V(D)rightarrow {0,1,2}$ satisfying the condition that every vertex $v$ with $f(v)=0$ has an in-neighbor $u$ with $f(u)=2$. The weight of an RDF $f$ is the value $sum_{vin V(D)}f(v)$. The Roman domination number of a digraph $D$ is the minimum weight of an RDF on $D$. A set ${f_1,f_2,dots,f_d}$ of Roman dominating functions on ...
یک k رنگ آمیزی گراف g را رنگ آمیزی پویا می نامند, اگر در همسایه های هر رأس آن با حداقل درجه دو, حداقل 2 رنگ متفاوت ظاهر شوند. کوچکترین عدد صحیح k را به طوری کهg دارای یک k-رنگ آمیزی پویا باشد, عدد رنگی پویای g می نامند. در این پایان نامه به بررسی مفهوم رنگ آمیزی پویا, عدد رنگی پویای برخی گراف های خاص و کران بالای عدد رنگی پویا که در مقاله lai, h. j.,b. montgomery, h. poon, (2003), upper bounds ...
Let k ≥ j ≥ 1 be two integers, and letG be a simple graph such that j(δ(G)+1) ≥ k, where δ(G) is the minimum degree of G. A (j, k)-dominating function of a graph G is a function f from the vertex set V (G) to the set {0, 1, 2, . . . , j} such that for any vertex v ∈ V (G), the condition ∑ u∈N[v] f(u) ≥ k is fulfilled, where N [v] is the closed neighborhood of v. A set {f1, f2, . . . , fd} of (j...
Let G be a (p, q)-graph with edge domination number γ′ and edge domatic number d′. In this paper we characterize connected graphs for which γ′ = p/2 and graphs for which γ′ + d′ = q + 1. We also characterize trees and unicyclic graphs for which γ′ = bp/2c and γ′ = q −∆′, where ∆′ denotes the maximum degree of an edge in G.
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید