نتایج جستجو برای: tuple total dominating set
تعداد نتایج: 1424241 فیلتر نتایج به سال:
Let $D$ be a finite simple digraph with vertex set $V(D)$ and arcset $A(D)$. A twin signed total Roman dominating function (TSTRDF) on thedigraph $D$ is a function $f:V(D)rightarrow{-1,1,2}$ satisfyingthe conditions that (i) $sum_{xin N^-(v)}f(x)ge 1$ and$sum_{xin N^+(v)}f(x)ge 1$ for each $vin V(D)$, where $N^-(v)$(resp. $N^+(v)$) consists of all in-neighbors (resp.out-neighbors) of $v$, and (...
An edge e ∈ E(G) dominates a vertex v ∈ V (G) if e is incident with v or e is incident with a vertex adjacent to v. An edge-vertex dominating set of a graph G is a set D of edges of G such that every vertex of G is edgevertex dominated by an edge of D. The edge-vertex domination number of a graph G is the minimum cardinality of an edge-vertex dominating set of G. A subset D ⊆ V (G) is a total d...
Given a graphG = (V , E)with no isolated vertex, a subset S of V is called a total dominating set of G if every vertex in V is adjacent to a vertex in S. A total dominating set S is called a differentiating-total dominating set if for every pair of distinct vertices u and v in V , N[u] ∩ S ≠ N[v] ∩ S. The minimum cardinality of a differentiating-total dominating set of G is the differentiating-...
A total dominating set of a graph G = (V,E) with no isolated vertex is a set D ⊆ V (G) such that every vertex is adjacent to a vertex in D. A total dominating set D of G is a locating-total dominating set if for every pair of distinct vertices u and v in V −D, N(u) ∩D = N(v) ∩D. Let γ L(G) be the minimum cardinality of a locating-total dominating set of G. We show that for a nontrivial tree T o...
A secure (total) dominating set of a graph G = (V, E) is a (total) dominating set X ⊆ V with the property that for each u ∈ V − X , there exists x ∈ X adjacent to u such that (X − {x}) ∪ {u} is (total) dominating. The smallest cardinality of a secure (total) dominating set is the secure (total) domination number γs(G) (γst(G)). We characterize graphs with equal total and secure total domination...
Let $G$ be a graph with vertex set $V(G)$. For any integer $kge 1$, a signed (total) $k$-dominating functionis a function $f: V(G) rightarrow { -1, 1}$ satisfying $sum_{xin N[v]}f(x)ge k$ ($sum_{xin N(v)}f(x)ge k$)for every $vin V(G)$, where $N(v)$ is the neighborhood of $v$ and $N[v]=N(v)cup{v}$. The minimum of the values$sum_{vin V(G)}f(v)$, taken over all signed (total) $k$-dominating functi...
In this paper, we continue the study of neighborhood total domination in graphs first studied by Arumugam and Sivagnanam [S. Arumugam, C. Sivagnanam, Neighborhood total domination in graphs, Opuscula Math. 31 (2011) 519–531]. A neighborhood total dominating set, abbreviated NTD-set, in a graph G is a dominating set S in G with the property that the subgraph induced by the open neighborhood of t...
Let G = (V,E) be a graph. A set S ⊆ V is a restrained dominating set if every vertex not in S is adjacent to a vertex in S and to a vertex in V \ S. The restrained domination number of G, denoted by γr(G), is the minimum cardinality of a restrained dominating set of G. A set S ⊆ V is a total dominating set if every vertex in V is adjacent to a vertex in S. The total domination number of a graph...
نمودار تعداد نتایج جستجو در هر سال
با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید