نتایج جستجو برای: three critical points theorem

تعداد نتایج: 2030662  

2001
Marco Loog Johannes Jisse Duistermaat Luc Florack

The main theorem we present is a version of a “Folklore Theorem” from scale-space theory for nonnegative compactly supported functions from R to R. The theorem states that, if we take the scale in scale-space sufficiently large, the Gaussian-blurred function has only one spatial critical extremum, a maximum, and no other critical points. Two other interesting results concerning nonnegative comp...

1998
DIMITAR K. DIMITROV

The classical Gauss-Lucas Theorem states that all the critical points (zeros of the derivative) of a nonconstant polynomial p lie in the convex hull Ξ of the zeros of p. It is proved that, actually, a subdomain of Ξ contains the critical points of p.

Journal: :Proceedings of the American Mathematical Society 1960

Journal: :Symmetry, Integrability and Geometry: Methods and Applications 2013

For the polynomial planar vector fields with a hyperbolic or nilpotent critical point at the origin, the monodromy problem has been solved, but for the strongly degenerate critical points this problem is still open. When the critical point is monodromic, the stability problem or the center- focus problem is an open problem too. In this paper we will consider the polynomial planar vector fields ...

Journal: :Foundations of Computational Mathematics 2013
Katharine Turner

Often noisy point clouds are given as an approximation of a particular compact set of interest. A finite point cloud is a compact set. This paper proves a reconstruction theorem which gives a sufficient condition, as a bound on the Hausdorff distance between two compact sets, for when certain offsets of these two sets are homotopic in terms of the absence of μ-critical points in an annular regi...

2006
Vladlen Timorin

At every point, a smooth plane curve can be approximated, to second order, by a circle; this circle is called osculating. One may think of the osculating circle as passing through three infinitesimally close points of the curve. A vertex of the curve is a point at which the osculating circle hyper-osculates: it approximates the curve to third order. Equivalently, a vertex is a critical point of...

2006
Vladlen Timorin

At every point, a smooth plane curve can be approximated, to second order, by a circle; this circle is called osculating. One may think of the osculating circle as passing through three infinitesimally close points of the curve. A vertex of the curve is a point at which the osculating circle hyper-osculates: it approximates the curve to third order. Equivalently, a vertex is a critical point of...

نمودار تعداد نتایج جستجو در هر سال

با کلیک روی نمودار نتایج را به سال انتشار فیلتر کنید